Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nlpineqsn Structured version   Visualization version   GIF version

Theorem nlpineqsn 34692
Description: For every point 𝑝 of a subset 𝐴 of 𝑋 with no limit points, there exists an open set 𝑛 that intersects 𝐴 only at 𝑝. (Contributed by ML, 23-Mar-2021.)
Hypothesis
Ref Expression
nlpineqsn.x 𝑋 = 𝐽
Assertion
Ref Expression
nlpineqsn ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Distinct variable groups:   𝐴,𝑛,𝑝   𝑛,𝐽,𝑝   𝑛,𝑋,𝑝

Proof of Theorem nlpineqsn
StepHypRef Expression
1 simp1 1132 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐽 ∈ Top)
2 simp2 1133 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝐴𝑋)
3 ssel2 3962 . . . . . . 7 ((𝐴𝑋𝑝𝐴) → 𝑝𝑋)
433adant1 1126 . . . . . 6 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → 𝑝𝑋)
51, 2, 43jca 1124 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋))
6 noel 4296 . . . . . . . . 9 ¬ 𝑝 ∈ ∅
7 eleq2 2901 . . . . . . . . 9 (((limPt‘𝐽)‘𝐴) = ∅ → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ 𝑝 ∈ ∅))
86, 7mtbiri 329 . . . . . . . 8 (((limPt‘𝐽)‘𝐴) = ∅ → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
98adantl 484 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ 𝑝 ∈ ((limPt‘𝐽)‘𝐴))
10 nlpineqsn.x . . . . . . . . 9 𝑋 = 𝐽
1110islp3 21754 . . . . . . . 8 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
1211adantr 483 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (𝑝 ∈ ((limPt‘𝐽)‘𝐴) ↔ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅)))
139, 12mtbid 326 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
14 nne 3020 . . . . . . . . . 10 (¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅ ↔ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅)
1514anbi2i 624 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
16 annim 406 . . . . . . . . 9 ((𝑝𝑛 ∧ ¬ (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1715, 16bitr3i 279 . . . . . . . 8 ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
1817rexbii 3247 . . . . . . 7 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
19 rexnal 3238 . . . . . . 7 (∃𝑛𝐽 ¬ (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2018, 19bitri 277 . . . . . 6 (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ¬ ∀𝑛𝐽 (𝑝𝑛 → (𝑛 ∩ (𝐴 ∖ {𝑝})) ≠ ∅))
2113, 20sylibr 236 . . . . 5 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝑋) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
225, 21sylan 582 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅))
23 indif2 4247 . . . . . . . . . . . 12 (𝑛 ∩ (𝐴 ∖ {𝑝})) = ((𝑛𝐴) ∖ {𝑝})
2423eqeq1i 2826 . . . . . . . . . . 11 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
25 ssdif0 4323 . . . . . . . . . . 11 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) ∖ {𝑝}) = ∅)
2624, 25bitr4i 280 . . . . . . . . . 10 ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) ⊆ {𝑝})
27 elin 4169 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) ↔ (𝑝𝑛𝑝𝐴))
28 n0i 4299 . . . . . . . . . . . . 13 (𝑝 ∈ (𝑛𝐴) → ¬ (𝑛𝐴) = ∅)
29 biorf 933 . . . . . . . . . . . . 13 (¬ (𝑛𝐴) = ∅ → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
3028, 29syl 17 . . . . . . . . . . . 12 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) = {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝})))
31 sssn 4759 . . . . . . . . . . . 12 ((𝑛𝐴) ⊆ {𝑝} ↔ ((𝑛𝐴) = ∅ ∨ (𝑛𝐴) = {𝑝}))
3230, 31syl6rbbr 292 . . . . . . . . . . 11 (𝑝 ∈ (𝑛𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3327, 32sylbir 237 . . . . . . . . . 10 ((𝑝𝑛𝑝𝐴) → ((𝑛𝐴) ⊆ {𝑝} ↔ (𝑛𝐴) = {𝑝}))
3426, 33syl5bb 285 . . . . . . . . 9 ((𝑝𝑛𝑝𝐴) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3534ancoms 461 . . . . . . . 8 ((𝑝𝐴𝑝𝑛) → ((𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅ ↔ (𝑛𝐴) = {𝑝}))
3635pm5.32da 581 . . . . . . 7 (𝑝𝐴 → ((𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3736rexbidv 3297 . . . . . 6 (𝑝𝐴 → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
38373ad2ant3 1131 . . . . 5 ((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
3938adantr 483 . . . 4 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → (∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛 ∩ (𝐴 ∖ {𝑝})) = ∅) ↔ ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝})))
4022, 39mpbid 234 . . 3 (((𝐽 ∈ Top ∧ 𝐴𝑋𝑝𝐴) ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
41403an1rs 1355 . 2 (((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) ∧ 𝑝𝐴) → ∃𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
4241ralrimiva 3182 1 ((𝐽 ∈ Top ∧ 𝐴𝑋 ∧ ((limPt‘𝐽)‘𝐴) = ∅) → ∀𝑝𝐴𝑛𝐽 (𝑝𝑛 ∧ (𝑛𝐴) = {𝑝}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  wne 3016  wral 3138  wrex 3139  cdif 3933  cin 3935  wss 3936  c0 4291  {csn 4567   cuni 4838  cfv 6355  Topctop 21501  limPtclp 21742
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-top 21502  df-cld 21627  df-ntr 21628  df-cls 21629  df-lp 21744
This theorem is referenced by:  nlpfvineqsn  34693  pibt2  34701
  Copyright terms: Public domain W3C validator