MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  notrab Structured version   Visualization version   GIF version

Theorem notrab 3862
Description: Complementation of restricted class abstractions. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
notrab (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝜑(𝑥)

Proof of Theorem notrab
StepHypRef Expression
1 difab 3854 . 2 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
2 difin 3822 . . 3 (𝐴 ∖ (𝐴 ∩ {𝑥𝜑})) = (𝐴 ∖ {𝑥𝜑})
3 dfrab3 3860 . . . 4 {𝑥𝐴𝜑} = (𝐴 ∩ {𝑥𝜑})
43difeq2i 3686 . . 3 (𝐴 ∖ {𝑥𝐴𝜑}) = (𝐴 ∖ (𝐴 ∩ {𝑥𝜑}))
5 abid2 2731 . . . 4 {𝑥𝑥𝐴} = 𝐴
65difeq1i 3685 . . 3 ({𝑥𝑥𝐴} ∖ {𝑥𝜑}) = (𝐴 ∖ {𝑥𝜑})
72, 4, 63eqtr4i 2641 . 2 (𝐴 ∖ {𝑥𝐴𝜑}) = ({𝑥𝑥𝐴} ∖ {𝑥𝜑})
8 df-rab 2904 . 2 {𝑥𝐴 ∣ ¬ 𝜑} = {𝑥 ∣ (𝑥𝐴 ∧ ¬ 𝜑)}
91, 7, 83eqtr4i 2641 1 (𝐴 ∖ {𝑥𝐴𝜑}) = {𝑥𝐴 ∣ ¬ 𝜑}
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wa 382   = wceq 1474  wcel 1976  {cab 2595  {crab 2899  cdif 3536  cin 3538
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rab 2904  df-v 3174  df-dif 3542  df-in 3546
This theorem is referenced by:  rlimrege0  14106  ordtcld1  20758  ordtcld2  20759  lhop1lem  23524  rpvmasumlem  24920  hasheuni  29267  braew  29425
  Copyright terms: Public domain W3C validator