MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtcld2 Structured version   Visualization version   GIF version

Theorem ordtcld2 21806
Description: An upward ray [𝑃, +∞) is closed. (Contributed by Mario Carneiro, 3-Sep-2015.)
Hypothesis
Ref Expression
ordttopon.3 𝑋 = dom 𝑅
Assertion
Ref Expression
ordtcld2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Distinct variable groups:   𝑥,𝑃   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋

Proof of Theorem ordtcld2
StepHypRef Expression
1 ssrab2 4056 . . 3 {𝑥𝑋𝑃𝑅𝑥} ⊆ 𝑋
2 ordttopon.3 . . . . . 6 𝑋 = dom 𝑅
32ordttopon 21801 . . . . 5 (𝑅𝑉 → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
43adantr 483 . . . 4 ((𝑅𝑉𝑃𝑋) → (ordTop‘𝑅) ∈ (TopOn‘𝑋))
5 toponuni 21522 . . . 4 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → 𝑋 = (ordTop‘𝑅))
64, 5syl 17 . . 3 ((𝑅𝑉𝑃𝑋) → 𝑋 = (ordTop‘𝑅))
71, 6sseqtrid 4019 . 2 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅))
8 notrab 4280 . . . 4 (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥}
96difeq1d 4098 . . . 4 ((𝑅𝑉𝑃𝑋) → (𝑋 ∖ {𝑥𝑋𝑃𝑅𝑥}) = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
108, 9syl5eqr 2870 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} = ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}))
112ordtopn2 21803 . . 3 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋 ∣ ¬ 𝑃𝑅𝑥} ∈ (ordTop‘𝑅))
1210, 11eqeltrrd 2914 . 2 ((𝑅𝑉𝑃𝑋) → ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))
13 topontop 21521 . . 3 ((ordTop‘𝑅) ∈ (TopOn‘𝑋) → (ordTop‘𝑅) ∈ Top)
14 eqid 2821 . . . 4 (ordTop‘𝑅) = (ordTop‘𝑅)
1514iscld 21635 . . 3 ((ordTop‘𝑅) ∈ Top → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
164, 13, 153syl 18 . 2 ((𝑅𝑉𝑃𝑋) → ({𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)) ↔ ({𝑥𝑋𝑃𝑅𝑥} ⊆ (ordTop‘𝑅) ∧ ( (ordTop‘𝑅) ∖ {𝑥𝑋𝑃𝑅𝑥}) ∈ (ordTop‘𝑅))))
177, 12, 16mpbir2and 711 1 ((𝑅𝑉𝑃𝑋) → {𝑥𝑋𝑃𝑅𝑥} ∈ (Clsd‘(ordTop‘𝑅)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3142  cdif 3933  wss 3936   cuni 4838   class class class wbr 5066  dom cdm 5555  cfv 6355  ordTopcordt 16772  Topctop 21501  TopOnctopon 21518  Clsdccld 21624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-int 4877  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-om 7581  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-oadd 8106  df-er 8289  df-en 8510  df-fin 8513  df-fi 8875  df-topgen 16717  df-ordt 16774  df-top 21502  df-topon 21519  df-bases 21554  df-cld 21627
This theorem is referenced by:  ordtcld3  21807
  Copyright terms: Public domain W3C validator