MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgbi Structured version   Visualization version   GIF version

Theorem nsgbi 18311
Description: Defining property of a normal subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Hypotheses
Ref Expression
isnsg.1 𝑋 = (Base‘𝐺)
isnsg.2 + = (+g𝐺)
Assertion
Ref Expression
nsgbi ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))

Proof of Theorem nsgbi
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isnsg.1 . . . . 5 𝑋 = (Base‘𝐺)
2 isnsg.2 . . . . 5 + = (+g𝐺)
31, 2isnsg 18309 . . . 4 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆)))
43simprbi 499 . . 3 (𝑆 ∈ (NrmSGrp‘𝐺) → ∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆))
5 oveq1 7165 . . . . . 6 (𝑥 = 𝐴 → (𝑥 + 𝑦) = (𝐴 + 𝑦))
65eleq1d 2899 . . . . 5 (𝑥 = 𝐴 → ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝑦) ∈ 𝑆))
7 oveq2 7166 . . . . . 6 (𝑥 = 𝐴 → (𝑦 + 𝑥) = (𝑦 + 𝐴))
87eleq1d 2899 . . . . 5 (𝑥 = 𝐴 → ((𝑦 + 𝑥) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆))
96, 8bibi12d 348 . . . 4 (𝑥 = 𝐴 → (((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) ↔ ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆)))
10 oveq2 7166 . . . . . 6 (𝑦 = 𝐵 → (𝐴 + 𝑦) = (𝐴 + 𝐵))
1110eleq1d 2899 . . . . 5 (𝑦 = 𝐵 → ((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝐴 + 𝐵) ∈ 𝑆))
12 oveq1 7165 . . . . . 6 (𝑦 = 𝐵 → (𝑦 + 𝐴) = (𝐵 + 𝐴))
1312eleq1d 2899 . . . . 5 (𝑦 = 𝐵 → ((𝑦 + 𝐴) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
1411, 13bibi12d 348 . . . 4 (𝑦 = 𝐵 → (((𝐴 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝐴) ∈ 𝑆) ↔ ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
159, 14rspc2v 3635 . . 3 ((𝐴𝑋𝐵𝑋) → (∀𝑥𝑋𝑦𝑋 ((𝑥 + 𝑦) ∈ 𝑆 ↔ (𝑦 + 𝑥) ∈ 𝑆) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
164, 15syl5com 31 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) → ((𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆)))
17163impib 1112 1 ((𝑆 ∈ (NrmSGrp‘𝐺) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴 + 𝐵) ∈ 𝑆 ↔ (𝐵 + 𝐴) ∈ 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wral 3140  cfv 6357  (class class class)co 7158  Basecbs 16485  +gcplusg 16567  SubGrpcsubg 18275  NrmSGrpcnsg 18276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ral 3145  df-rex 3146  df-rab 3149  df-v 3498  df-sbc 3775  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fv 6365  df-ov 7161  df-subg 18278  df-nsg 18279
This theorem is referenced by:  nsgconj  18313  eqgcpbl  18336
  Copyright terms: Public domain W3C validator