MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nsgsubg Structured version   Visualization version   GIF version

Theorem nsgsubg 17566
Description: A normal subgroup is a subgroup. (Contributed by Mario Carneiro, 18-Jan-2015.)
Assertion
Ref Expression
nsgsubg (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))

Proof of Theorem nsgsubg
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2621 . . 3 (Base‘𝐺) = (Base‘𝐺)
2 eqid 2621 . . 3 (+g𝐺) = (+g𝐺)
31, 2isnsg 17563 . 2 (𝑆 ∈ (NrmSGrp‘𝐺) ↔ (𝑆 ∈ (SubGrp‘𝐺) ∧ ∀𝑥 ∈ (Base‘𝐺)∀𝑦 ∈ (Base‘𝐺)((𝑥(+g𝐺)𝑦) ∈ 𝑆 ↔ (𝑦(+g𝐺)𝑥) ∈ 𝑆)))
43simplbi 476 1 (𝑆 ∈ (NrmSGrp‘𝐺) → 𝑆 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wcel 1987  wral 2908  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  SubGrpcsubg 17528  NrmSGrpcnsg 17529
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-iota 5820  df-fun 5859  df-fv 5865  df-ov 6618  df-subg 17531  df-nsg 17532
This theorem is referenced by:  nsgconj  17567  isnsg3  17568  eqgcpbl  17588  qusgrp  17589  quseccl  17590  qusadd  17591  qus0  17592  qusinv  17593  qussub  17594  ghmnsgima  17624  ghmnsgpreima  17625  conjnsg  17636  qusghm  17637  sylow3lem4  17985  clsnsg  21853  qustgpopn  21863  qustgphaus  21866
  Copyright terms: Public domain W3C validator