Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ofcc Structured version   Visualization version   GIF version

Theorem ofcc 31365
Description: Left operation by a constant on a mixed operation with a constant. (Contributed by Thierry Arnoux, 31-Jan-2017.)
Hypotheses
Ref Expression
ofcc.1 (𝜑𝐴𝑉)
ofcc.2 (𝜑𝐵𝑊)
ofcc.3 (𝜑𝐶𝑋)
Assertion
Ref Expression
ofcc (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))

Proof of Theorem ofcc
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ofcc.2 . . . 4 (𝜑𝐵𝑊)
2 fnconstg 6567 . . . 4 (𝐵𝑊 → (𝐴 × {𝐵}) Fn 𝐴)
31, 2syl 17 . . 3 (𝜑 → (𝐴 × {𝐵}) Fn 𝐴)
4 ofcc.1 . . 3 (𝜑𝐴𝑉)
5 ofcc.3 . . 3 (𝜑𝐶𝑋)
6 fvconst2g 6964 . . . 4 ((𝐵𝑊𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
71, 6sylan 582 . . 3 ((𝜑𝑥𝐴) → ((𝐴 × {𝐵})‘𝑥) = 𝐵)
83, 4, 5, 7ofcfval 31357 . 2 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝑥𝐴 ↦ (𝐵𝑅𝐶)))
9 fconstmpt 5614 . 2 (𝐴 × {(𝐵𝑅𝐶)}) = (𝑥𝐴 ↦ (𝐵𝑅𝐶))
108, 9syl6eqr 2874 1 (𝜑 → ((𝐴 × {𝐵}) ∘f/c 𝑅𝐶) = (𝐴 × {(𝐵𝑅𝐶)}))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2114  {csn 4567  cmpt 5146   × cxp 5553   Fn wfn 6350  cfv 6355  (class class class)co 7156  f/c cofc 31354
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-ofc 31355
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator