MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oneqmini Structured version   Visualization version   GIF version

Theorem oneqmini 5937
Description: A way to show that an ordinal number equals the minimum of a collection of ordinal numbers: it must be in the collection, and it must not be larger than any member of the collection. (Contributed by NM, 14-Nov-2003.)
Assertion
Ref Expression
oneqmini (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem oneqmini
StepHypRef Expression
1 ssint 4645 . . . . . 6 (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥)
2 ssel 3738 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝐴𝐵𝐴 ∈ On))
3 ssel 3738 . . . . . . . . . . . 12 (𝐵 ⊆ On → (𝑥𝐵𝑥 ∈ On))
42, 3anim12d 587 . . . . . . . . . . 11 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴 ∈ On ∧ 𝑥 ∈ On)))
5 ontri1 5918 . . . . . . . . . . 11 ((𝐴 ∈ On ∧ 𝑥 ∈ On) → (𝐴𝑥 ↔ ¬ 𝑥𝐴))
64, 5syl6 35 . . . . . . . . . 10 (𝐵 ⊆ On → ((𝐴𝐵𝑥𝐵) → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
76expdimp 452 . . . . . . . . 9 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝑥𝐵 → (𝐴𝑥 ↔ ¬ 𝑥𝐴)))
87pm5.74d 262 . . . . . . . 8 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐵 → ¬ 𝑥𝐴)))
9 con2b 348 . . . . . . . 8 ((𝑥𝐵 → ¬ 𝑥𝐴) ↔ (𝑥𝐴 → ¬ 𝑥𝐵))
108, 9syl6bb 276 . . . . . . 7 ((𝐵 ⊆ On ∧ 𝐴𝐵) → ((𝑥𝐵𝐴𝑥) ↔ (𝑥𝐴 → ¬ 𝑥𝐵)))
1110ralbidv2 3122 . . . . . 6 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐵 𝐴𝑥 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
121, 11syl5bb 272 . . . . 5 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (𝐴 𝐵 ↔ ∀𝑥𝐴 ¬ 𝑥𝐵))
1312biimprd 238 . . . 4 ((𝐵 ⊆ On ∧ 𝐴𝐵) → (∀𝑥𝐴 ¬ 𝑥𝐵𝐴 𝐵))
1413expimpd 630 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 𝐵))
15 intss1 4644 . . . . 5 (𝐴𝐵 𝐵𝐴)
1615a1i 11 . . . 4 (𝐵 ⊆ On → (𝐴𝐵 𝐵𝐴))
1716adantrd 485 . . 3 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐵𝐴))
1814, 17jcad 556 . 2 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → (𝐴 𝐵 𝐵𝐴)))
19 eqss 3759 . 2 (𝐴 = 𝐵 ↔ (𝐴 𝐵 𝐵𝐴))
2018, 19syl6ibr 242 1 (𝐵 ⊆ On → ((𝐴𝐵 ∧ ∀𝑥𝐴 ¬ 𝑥𝐵) → 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  wral 3050  wss 3715   cint 4627  Oncon0 5884
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-int 4628  df-br 4805  df-opab 4865  df-tr 4905  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-ord 5887  df-on 5888
This theorem is referenced by:  oneqmin  7171  alephval3  9143  cfsuc  9291  alephval2  9606
  Copyright terms: Public domain W3C validator