MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  onovuni Structured version   Visualization version   GIF version

Theorem onovuni 7979
Description: A variant of onfununi 7978 for operations. (Contributed by Eric Schmidt, 26-May-2009.) (Revised by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
onovuni.1 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
onovuni.2 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
Assertion
Ref Expression
onovuni ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦   𝑥,𝑇
Allowed substitution hint:   𝑇(𝑦)

Proof of Theorem onovuni
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 onovuni.1 . . . 4 (Lim 𝑦 → (𝐴𝐹𝑦) = 𝑥𝑦 (𝐴𝐹𝑥))
2 oveq2 7164 . . . . . 6 (𝑧 = 𝑦 → (𝐴𝐹𝑧) = (𝐴𝐹𝑦))
3 eqid 2821 . . . . . 6 (𝑧 ∈ V ↦ (𝐴𝐹𝑧)) = (𝑧 ∈ V ↦ (𝐴𝐹𝑧))
4 ovex 7189 . . . . . 6 (𝐴𝐹𝑦) ∈ V
52, 3, 4fvmpt 6768 . . . . 5 (𝑦 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦))
65elv 3499 . . . 4 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = (𝐴𝐹𝑦)
7 oveq2 7164 . . . . . . . 8 (𝑧 = 𝑥 → (𝐴𝐹𝑧) = (𝐴𝐹𝑥))
8 ovex 7189 . . . . . . . 8 (𝐴𝐹𝑥) ∈ V
97, 3, 8fvmpt 6768 . . . . . . 7 (𝑥 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
109elv 3499 . . . . . 6 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥)
1110a1i 11 . . . . 5 (𝑥𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
1211iuneq2i 4940 . . . 4 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑦 (𝐴𝐹𝑥)
131, 6, 123eqtr4g 2881 . . 3 (Lim 𝑦 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦) = 𝑥𝑦 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
14 onovuni.2 . . . 4 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → (𝐴𝐹𝑥) ⊆ (𝐴𝐹𝑦))
1514, 10, 63sstr4g 4012 . . 3 ((𝑥 ∈ On ∧ 𝑦 ∈ On ∧ 𝑥𝑦) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) ⊆ ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑦))
1613, 15onfununi 7978 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥))
17 uniexg 7466 . . . 4 (𝑆𝑇 𝑆 ∈ V)
18 oveq2 7164 . . . . 5 (𝑧 = 𝑆 → (𝐴𝐹𝑧) = (𝐴𝐹 𝑆))
19 ovex 7189 . . . . 5 (𝐴𝐹 𝑆) ∈ V
2018, 3, 19fvmpt 6768 . . . 4 ( 𝑆 ∈ V → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2117, 20syl 17 . . 3 (𝑆𝑇 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
22213ad2ant1 1129 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘ 𝑆) = (𝐴𝐹 𝑆))
2310a1i 11 . . . 4 (𝑥𝑆 → ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = (𝐴𝐹𝑥))
2423iuneq2i 4940 . . 3 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥)
2524a1i 11 . 2 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → 𝑥𝑆 ((𝑧 ∈ V ↦ (𝐴𝐹𝑧))‘𝑥) = 𝑥𝑆 (𝐴𝐹𝑥))
2616, 22, 253eqtr3d 2864 1 ((𝑆𝑇𝑆 ⊆ On ∧ 𝑆 ≠ ∅) → (𝐴𝐹 𝑆) = 𝑥𝑆 (𝐴𝐹𝑥))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1083   = wceq 1537  wcel 2114  wne 3016  Vcvv 3494  wss 3936  c0 4291   cuni 4838   ciun 4919  cmpt 5146  Oncon0 6191  Lim wlim 6192  cfv 6355  (class class class)co 7156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-ord 6194  df-on 6195  df-lim 6196  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159
This theorem is referenced by:  onoviun  7980
  Copyright terms: Public domain W3C validator