MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordunisuc2 Structured version   Visualization version   GIF version

Theorem ordunisuc2 6913
Description: An ordinal equal to its union contains the successor of each of its members. (Contributed by NM, 1-Feb-2005.)
Assertion
Ref Expression
ordunisuc2 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
Distinct variable group:   𝑥,𝐴

Proof of Theorem ordunisuc2
StepHypRef Expression
1 orduninsuc 6912 . 2 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥))
2 ralnex 2974 . . 3 (∀𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥)
3 suceloni 6882 . . . . . . . . . 10 (𝑥 ∈ On → suc 𝑥 ∈ On)
4 eloni 5635 . . . . . . . . . 10 (suc 𝑥 ∈ On → Ord suc 𝑥)
53, 4syl 17 . . . . . . . . 9 (𝑥 ∈ On → Ord suc 𝑥)
6 ordtri3 5661 . . . . . . . . 9 ((Ord 𝐴 ∧ Ord suc 𝑥) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
75, 6sylan2 489 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → (𝐴 = suc 𝑥 ↔ ¬ (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
87con2bid 342 . . . . . . 7 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) ↔ ¬ 𝐴 = suc 𝑥))
9 onnbtwn 5720 . . . . . . . . . . . . 13 (𝑥 ∈ On → ¬ (𝑥𝐴𝐴 ∈ suc 𝑥))
10 imnan 436 . . . . . . . . . . . . 13 ((𝑥𝐴 → ¬ 𝐴 ∈ suc 𝑥) ↔ ¬ (𝑥𝐴𝐴 ∈ suc 𝑥))
119, 10sylibr 222 . . . . . . . . . . . 12 (𝑥 ∈ On → (𝑥𝐴 → ¬ 𝐴 ∈ suc 𝑥))
1211con2d 127 . . . . . . . . . . 11 (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → ¬ 𝑥𝐴))
13 pm2.21 118 . . . . . . . . . . 11 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴))
1412, 13syl6 34 . . . . . . . . . 10 (𝑥 ∈ On → (𝐴 ∈ suc 𝑥 → (𝑥𝐴 → suc 𝑥𝐴)))
1514adantl 480 . . . . . . . . 9 ((Ord 𝐴𝑥 ∈ On) → (𝐴 ∈ suc 𝑥 → (𝑥𝐴 → suc 𝑥𝐴)))
16 ax-1 6 . . . . . . . . . 10 (suc 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴))
1716a1i 11 . . . . . . . . 9 ((Ord 𝐴𝑥 ∈ On) → (suc 𝑥𝐴 → (𝑥𝐴 → suc 𝑥𝐴)))
1815, 17jaod 393 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) → (𝑥𝐴 → suc 𝑥𝐴)))
19 eloni 5635 . . . . . . . . . . . . . 14 (𝑥 ∈ On → Ord 𝑥)
20 ordtri2or 5724 . . . . . . . . . . . . . 14 ((Ord 𝑥 ∧ Ord 𝐴) → (𝑥𝐴𝐴𝑥))
2119, 20sylan 486 . . . . . . . . . . . . 13 ((𝑥 ∈ On ∧ Ord 𝐴) → (𝑥𝐴𝐴𝑥))
2221ancoms 467 . . . . . . . . . . . 12 ((Ord 𝐴𝑥 ∈ On) → (𝑥𝐴𝐴𝑥))
2322orcomd 401 . . . . . . . . . . 11 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝑥𝐴))
2423adantr 479 . . . . . . . . . 10 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴𝑥𝑥𝐴))
25 ordsssuc2 5716 . . . . . . . . . . . . 13 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝐴 ∈ suc 𝑥))
2625biimpd 217 . . . . . . . . . . . 12 ((Ord 𝐴𝑥 ∈ On) → (𝐴𝑥𝐴 ∈ suc 𝑥))
2726adantr 479 . . . . . . . . . . 11 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴𝑥𝐴 ∈ suc 𝑥))
28 simpr 475 . . . . . . . . . . 11 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝑥𝐴 → suc 𝑥𝐴))
2927, 28orim12d 878 . . . . . . . . . 10 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → ((𝐴𝑥𝑥𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
3024, 29mpd 15 . . . . . . . . 9 (((Ord 𝐴𝑥 ∈ On) ∧ (𝑥𝐴 → suc 𝑥𝐴)) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴))
3130ex 448 . . . . . . . 8 ((Ord 𝐴𝑥 ∈ On) → ((𝑥𝐴 → suc 𝑥𝐴) → (𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴)))
3218, 31impbid 200 . . . . . . 7 ((Ord 𝐴𝑥 ∈ On) → ((𝐴 ∈ suc 𝑥 ∨ suc 𝑥𝐴) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
338, 32bitr3d 268 . . . . . 6 ((Ord 𝐴𝑥 ∈ On) → (¬ 𝐴 = suc 𝑥 ↔ (𝑥𝐴 → suc 𝑥𝐴)))
3433pm5.74da 718 . . . . 5 (Ord 𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴))))
35 impexp 460 . . . . . 6 (((𝑥 ∈ On ∧ 𝑥𝐴) → suc 𝑥𝐴) ↔ (𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴)))
36 simpr 475 . . . . . . . 8 ((𝑥 ∈ On ∧ 𝑥𝐴) → 𝑥𝐴)
37 ordelon 5649 . . . . . . . . . 10 ((Ord 𝐴𝑥𝐴) → 𝑥 ∈ On)
3837ex 448 . . . . . . . . 9 (Ord 𝐴 → (𝑥𝐴𝑥 ∈ On))
3938ancrd 574 . . . . . . . 8 (Ord 𝐴 → (𝑥𝐴 → (𝑥 ∈ On ∧ 𝑥𝐴)))
4036, 39impbid2 214 . . . . . . 7 (Ord 𝐴 → ((𝑥 ∈ On ∧ 𝑥𝐴) ↔ 𝑥𝐴))
4140imbi1d 329 . . . . . 6 (Ord 𝐴 → (((𝑥 ∈ On ∧ 𝑥𝐴) → suc 𝑥𝐴) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4235, 41syl5bbr 272 . . . . 5 (Ord 𝐴 → ((𝑥 ∈ On → (𝑥𝐴 → suc 𝑥𝐴)) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4334, 42bitrd 266 . . . 4 (Ord 𝐴 → ((𝑥 ∈ On → ¬ 𝐴 = suc 𝑥) ↔ (𝑥𝐴 → suc 𝑥𝐴)))
4443ralbidv2 2966 . . 3 (Ord 𝐴 → (∀𝑥 ∈ On ¬ 𝐴 = suc 𝑥 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
452, 44syl5bbr 272 . 2 (Ord 𝐴 → (¬ ∃𝑥 ∈ On 𝐴 = suc 𝑥 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
461, 45bitrd 266 1 (Ord 𝐴 → (𝐴 = 𝐴 ↔ ∀𝑥𝐴 suc 𝑥𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 194  wo 381  wa 382   = wceq 1474  wcel 1976  wral 2895  wrex 2896  wss 3539   cuni 4366  Ord word 5624  Oncon0 5625  suc csuc 5627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4711  ax-pr 4827  ax-un 6824
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3or 1031  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ne 2781  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-pss 3555  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-tp 4129  df-op 4131  df-uni 4367  df-br 4578  df-opab 4638  df-tr 4675  df-eprel 4938  df-po 4948  df-so 4949  df-fr 4986  df-we 4988  df-ord 5628  df-on 5629  df-suc 5631
This theorem is referenced by:  dflim4  6917  limsuc2  36412
  Copyright terms: Public domain W3C validator