Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT Structured version   Visualization version   GIF version

Theorem sspwimpALT 41349
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimpALT 41349 is the completed proof in conventional notation of the Virtual Deduction proof https://us.metamath.org/other/completeusersproof/sspwimpaltvd.html 41349. It was completed manually. The potential for automated derivation from the VD proof exists. See wvd1 40993 for a description of Virtual Deduction. Some sub-theorems of the proof were completed using a unification deduction (e.g., the sub-theorem whose assertion is step 9 used elpwgded 40988). Unification deductions employ Mario Carneiro's metavariable concept. Some sub-theorems were completed using a unification theorem (e.g., the sub-theorem whose assertion is step 5 used elpwi 4534). (Contributed by Alan Sare, 3-Dec-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)

Proof of Theorem sspwimpALT
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 vex 3489 . . . . . . . 8 𝑥 ∈ V
21a1i 11 . . . . . . 7 (⊤ → 𝑥 ∈ V)
3 id 22 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐴)
4 elpwi 4534 . . . . . . . . 9 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
53, 4syl 17 . . . . . . . 8 (𝑥 ∈ 𝒫 𝐴𝑥𝐴)
6 id 22 . . . . . . . 8 (𝐴𝐵𝐴𝐵)
75, 6sylan9ssr 3969 . . . . . . 7 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥𝐵)
82, 7elpwgded 40988 . . . . . 6 ((⊤ ∧ (𝐴𝐵𝑥 ∈ 𝒫 𝐴)) → 𝑥 ∈ 𝒫 𝐵)
98uunT1 41204 . . . . 5 ((𝐴𝐵𝑥 ∈ 𝒫 𝐴) → 𝑥 ∈ 𝒫 𝐵)
109ex 415 . . . 4 (𝐴𝐵 → (𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1110alrimiv 1928 . . 3 (𝐴𝐵 → ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
12 dfss2 3943 . . . 4 (𝒫 𝐴 ⊆ 𝒫 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵))
1312biimpri 230 . . 3 (∀𝑥(𝑥 ∈ 𝒫 𝐴𝑥 ∈ 𝒫 𝐵) → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1411, 13syl 17 . 2 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
1514idiALT 40901 1 (𝐴𝐵 → 𝒫 𝐴 ⊆ 𝒫 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  wal 1535  wtru 1538  wcel 2114  Vcvv 3486  wss 3924  𝒫 cpw 4525
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-v 3488  df-in 3931  df-ss 3940  df-pw 4527
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator