MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  suppcofnd Structured version   Visualization version   GIF version

Theorem suppcofnd 7871
Description: The support of the composition of two functions. (Contributed by SN, 15-Sep-2023.)
Hypotheses
Ref Expression
suppcofnd.z (𝜑𝑍𝑈)
suppcofnd.f (𝜑𝐹 Fn 𝐴)
suppcofnd.a (𝜑𝐴𝑉)
suppcofnd.g (𝜑𝐺 Fn 𝐵)
suppcofnd.b (𝜑𝐵𝑊)
Assertion
Ref Expression
suppcofnd (𝜑 → ((𝐹𝐺) supp 𝑍) = {𝑥𝐵 ∣ ((𝐺𝑥) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑥)) ≠ 𝑍)})
Distinct variable groups:   𝑥,𝐹   𝑥,𝐺   𝑥,𝑍   𝑥,𝑈   𝑥,𝑊   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem suppcofnd
StepHypRef Expression
1 suppcofnd.f . . . 4 (𝜑𝐹 Fn 𝐴)
2 suppcofnd.a . . . 4 (𝜑𝐴𝑉)
31, 2fnexd 6981 . . 3 (𝜑𝐹 ∈ V)
4 suppcofnd.g . . . 4 (𝜑𝐺 Fn 𝐵)
5 suppcofnd.b . . . 4 (𝜑𝐵𝑊)
64, 5fnexd 6981 . . 3 (𝜑𝐺 ∈ V)
7 suppco 7870 . . 3 ((𝐹 ∈ V ∧ 𝐺 ∈ V) → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
83, 6, 7syl2anc 586 . 2 (𝜑 → ((𝐹𝐺) supp 𝑍) = (𝐺 “ (𝐹 supp 𝑍)))
9 fncnvima2 6831 . . 3 (𝐺 Fn 𝐵 → (𝐺 “ (𝐹 supp 𝑍)) = {𝑥𝐵 ∣ (𝐺𝑥) ∈ (𝐹 supp 𝑍)})
104, 9syl 17 . 2 (𝜑 → (𝐺 “ (𝐹 supp 𝑍)) = {𝑥𝐵 ∣ (𝐺𝑥) ∈ (𝐹 supp 𝑍)})
11 suppcofnd.z . . . 4 (𝜑𝑍𝑈)
12 elsuppfn 7838 . . . 4 ((𝐹 Fn 𝐴𝐴𝑉𝑍𝑈) → ((𝐺𝑥) ∈ (𝐹 supp 𝑍) ↔ ((𝐺𝑥) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑥)) ≠ 𝑍)))
131, 2, 11, 12syl3anc 1367 . . 3 (𝜑 → ((𝐺𝑥) ∈ (𝐹 supp 𝑍) ↔ ((𝐺𝑥) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑥)) ≠ 𝑍)))
1413rabbidv 3480 . 2 (𝜑 → {𝑥𝐵 ∣ (𝐺𝑥) ∈ (𝐹 supp 𝑍)} = {𝑥𝐵 ∣ ((𝐺𝑥) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑥)) ≠ 𝑍)})
158, 10, 143eqtrd 2860 1 (𝜑 → ((𝐹𝐺) supp 𝑍) = {𝑥𝐵 ∣ ((𝐺𝑥) ∈ 𝐴 ∧ (𝐹‘(𝐺𝑥)) ≠ 𝑍)})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3016  {crab 3142  Vcvv 3494  ccnv 5554  cima 5558  ccom 5559   Fn wfn 6350  cfv 6355  (class class class)co 7156   supp csupp 7830
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-supp 7831
This theorem is referenced by:  mhpinvcl  20339
  Copyright terms: Public domain W3C validator