Users' Mathboxes Mathbox for Rohan Ridenour < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tfindsd Structured version   Visualization version   GIF version

Theorem tfindsd 40638
Description: Deduction associated with tfinds 7567. (Contributed by Rohan Ridenour, 8-Aug-2023.)
Hypotheses
Ref Expression
tfindsd.1 (𝑥 = ∅ → (𝜓𝜒))
tfindsd.2 (𝑥 = 𝑦 → (𝜓𝜃))
tfindsd.3 (𝑥 = suc 𝑦 → (𝜓𝜏))
tfindsd.4 (𝑥 = 𝐴 → (𝜓𝜂))
tfindsd.5 (𝜑𝜒)
tfindsd.6 ((𝜑𝑦 ∈ On ∧ 𝜃) → 𝜏)
tfindsd.7 ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦𝑥 𝜃) → 𝜓)
tfindsd.8 (𝜑𝐴 ∈ On)
Assertion
Ref Expression
tfindsd (𝜑𝜂)
Distinct variable groups:   𝜓,𝑦   𝜃,𝑥   𝜂,𝑥   𝑥,𝐴   𝜑,𝑥,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥,𝑦)   𝜃(𝑦)   𝜏(𝑥,𝑦)   𝜂(𝑦)   𝐴(𝑦)

Proof of Theorem tfindsd
StepHypRef Expression
1 tfindsd.8 . 2 (𝜑𝐴 ∈ On)
2 tfindsd.1 . . 3 (𝑥 = ∅ → (𝜓𝜒))
3 tfindsd.2 . . 3 (𝑥 = 𝑦 → (𝜓𝜃))
4 tfindsd.3 . . 3 (𝑥 = suc 𝑦 → (𝜓𝜏))
5 tfindsd.4 . . 3 (𝑥 = 𝐴 → (𝜓𝜂))
6 tfindsd.5 . . 3 (𝜑𝜒)
7 tfindsd.6 . . . . 5 ((𝜑𝑦 ∈ On ∧ 𝜃) → 𝜏)
873exp 1114 . . . 4 (𝜑 → (𝑦 ∈ On → (𝜃𝜏)))
98com12 32 . . 3 (𝑦 ∈ On → (𝜑 → (𝜃𝜏)))
10 tfindsd.7 . . . . 5 ((𝜑 ∧ Lim 𝑥 ∧ ∀𝑦𝑥 𝜃) → 𝜓)
11103exp 1114 . . . 4 (𝜑 → (Lim 𝑥 → (∀𝑦𝑥 𝜃𝜓)))
1211com12 32 . . 3 (Lim 𝑥 → (𝜑 → (∀𝑦𝑥 𝜃𝜓)))
132, 3, 4, 5, 6, 9, 12tfinds3 7572 . 2 (𝐴 ∈ On → (𝜑𝜂))
141, 13mpcom 38 1 (𝜑𝜂)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  w3a 1082   = wceq 1536  wcel 2113  wral 3137  c0 4284  Oncon0 6184  Lim wlim 6185  suc csuc 6186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5196  ax-nul 5203  ax-pr 5323  ax-un 7454
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-sbc 3769  df-dif 3932  df-un 3934  df-in 3936  df-ss 3945  df-pss 3947  df-nul 4285  df-if 4461  df-pw 4534  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-br 5060  df-opab 5122  df-tr 5166  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190
This theorem is referenced by:  grur1cld  40642
  Copyright terms: Public domain W3C validator