MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tglngval Structured version   Visualization version   GIF version

Theorem tglngval 25666
Description: The line going through points 𝑋 and 𝑌. (Contributed by Thierry Arnoux, 28-Mar-2019.)
Hypotheses
Ref Expression
tglngval.p 𝑃 = (Base‘𝐺)
tglngval.l 𝐿 = (LineG‘𝐺)
tglngval.i 𝐼 = (Itv‘𝐺)
tglngval.g (𝜑𝐺 ∈ TarskiG)
tglngval.x (𝜑𝑋𝑃)
tglngval.y (𝜑𝑌𝑃)
tglngval.z (𝜑𝑋𝑌)
Assertion
Ref Expression
tglngval (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
Distinct variable groups:   𝑧,𝐺   𝑧,𝐼   𝑧,𝑃   𝑧,𝑋   𝑧,𝑌   𝜑,𝑧
Allowed substitution hint:   𝐿(𝑧)

Proof of Theorem tglngval
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 tglngval.g . . . 4 (𝜑𝐺 ∈ TarskiG)
2 tglngval.p . . . . 5 𝑃 = (Base‘𝐺)
3 tglngval.l . . . . 5 𝐿 = (LineG‘𝐺)
4 tglngval.i . . . . 5 𝐼 = (Itv‘𝐺)
52, 3, 4tglng 25661 . . . 4 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
61, 5syl 17 . . 3 (𝜑𝐿 = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
76oveqd 6831 . 2 (𝜑 → (𝑋𝐿𝑌) = (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌))
8 tglngval.x . . 3 (𝜑𝑋𝑃)
9 tglngval.y . . . 4 (𝜑𝑌𝑃)
10 tglngval.z . . . . 5 (𝜑𝑋𝑌)
1110necomd 2987 . . . 4 (𝜑𝑌𝑋)
12 eldifsn 4462 . . . 4 (𝑌 ∈ (𝑃 ∖ {𝑋}) ↔ (𝑌𝑃𝑌𝑋))
139, 11, 12sylanbrc 701 . . 3 (𝜑𝑌 ∈ (𝑃 ∖ {𝑋}))
14 fvex 6363 . . . . . 6 (Base‘𝐺) ∈ V
152, 14eqeltri 2835 . . . . 5 𝑃 ∈ V
1615rabex 4964 . . . 4 {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V
1716a1i 11 . . 3 (𝜑 → {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V)
18 oveq12 6823 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑦) = (𝑋𝐼𝑌))
1918eleq2d 2825 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧 ∈ (𝑥𝐼𝑦) ↔ 𝑧 ∈ (𝑋𝐼𝑌)))
20 simpl 474 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑥 = 𝑋)
21 simpr 479 . . . . . . . 8 ((𝑥 = 𝑋𝑦 = 𝑌) → 𝑦 = 𝑌)
2221oveq2d 6830 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑧𝐼𝑦) = (𝑧𝐼𝑌))
2320, 22eleq12d 2833 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥 ∈ (𝑧𝐼𝑦) ↔ 𝑋 ∈ (𝑧𝐼𝑌)))
2420oveq1d 6829 . . . . . . 7 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑥𝐼𝑧) = (𝑋𝐼𝑧))
2521, 24eleq12d 2833 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝑦 ∈ (𝑥𝐼𝑧) ↔ 𝑌 ∈ (𝑋𝐼𝑧)))
2619, 23, 253orbi123d 1547 . . . . 5 ((𝑥 = 𝑋𝑦 = 𝑌) → ((𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧)) ↔ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))))
2726rabbidv 3329 . . . 4 ((𝑥 = 𝑋𝑦 = 𝑌) → {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
28 sneq 4331 . . . . 5 (𝑥 = 𝑋 → {𝑥} = {𝑋})
2928difeq2d 3871 . . . 4 (𝑥 = 𝑋 → (𝑃 ∖ {𝑥}) = (𝑃 ∖ {𝑋}))
30 eqid 2760 . . . 4 (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
3127, 29, 30ovmpt2x 6955 . . 3 ((𝑋𝑃𝑌 ∈ (𝑃 ∖ {𝑋}) ∧ {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))} ∈ V) → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
328, 13, 17, 31syl3anc 1477 . 2 (𝜑 → (𝑋(𝑥𝑃, 𝑦 ∈ (𝑃 ∖ {𝑥}) ↦ {𝑧𝑃 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
337, 32eqtrd 2794 1 (𝜑 → (𝑋𝐿𝑌) = {𝑧𝑃 ∣ (𝑧 ∈ (𝑋𝐼𝑌) ∨ 𝑋 ∈ (𝑧𝐼𝑌) ∨ 𝑌 ∈ (𝑋𝐼𝑧))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3o 1071   = wceq 1632  wcel 2139  wne 2932  {crab 3054  Vcvv 3340  cdif 3712  {csn 4321  cfv 6049  (class class class)co 6814  cmpt2 6816  Basecbs 16079  TarskiGcstrkg 25549  Itvcitv 25555  LineGclng 25556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-trkg 25572
This theorem is referenced by:  tglnssp  25667  tgellng  25668  tgisline  25742
  Copyright terms: Public domain W3C validator