MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tgisline Structured version   Visualization version   GIF version

Theorem tgisline 26411
Description: The property of being a proper line, generated by two distinct points. (Contributed by Thierry Arnoux, 25-May-2019.)
Hypotheses
Ref Expression
tglineelsb2.p 𝐵 = (Base‘𝐺)
tglineelsb2.i 𝐼 = (Itv‘𝐺)
tglineelsb2.l 𝐿 = (LineG‘𝐺)
tglineelsb2.g (𝜑𝐺 ∈ TarskiG)
tgisline.1 (𝜑𝐴 ∈ ran 𝐿)
Assertion
Ref Expression
tgisline (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐺,𝑦   𝑥,𝐼,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐿(𝑥,𝑦)

Proof of Theorem tgisline
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tglineelsb2.p . . . . . 6 𝐵 = (Base‘𝐺)
2 tglineelsb2.l . . . . . 6 𝐿 = (LineG‘𝐺)
3 tglineelsb2.i . . . . . 6 𝐼 = (Itv‘𝐺)
4 tglineelsb2.g . . . . . . 7 (𝜑𝐺 ∈ TarskiG)
54adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝐺 ∈ TarskiG)
6 simprl 769 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝐵)
7 simprr 771 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦 ∈ (𝐵 ∖ {𝑥}))
87eldifad 3945 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝐵)
9 eldifsn 4716 . . . . . . . . 9 (𝑦 ∈ (𝐵 ∖ {𝑥}) ↔ (𝑦𝐵𝑦𝑥))
107, 9sylib 220 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑦𝐵𝑦𝑥))
1110simprd 498 . . . . . . 7 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑦𝑥)
1211necomd 3070 . . . . . 6 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → 𝑥𝑦)
131, 2, 3, 5, 6, 8, 12tglngval 26335 . . . . 5 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
1413, 12jca 514 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥}))) → ((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
1514ralrimivva 3190 . . 3 (𝜑 → ∀𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦))
16 tgisline.1 . . . . 5 (𝜑𝐴 ∈ ran 𝐿)
171, 2, 3tglng 26330 . . . . . . 7 (𝐺 ∈ TarskiG → 𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
184, 17syl 17 . . . . . 6 (𝜑𝐿 = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
1918rneqd 5805 . . . . 5 (𝜑 → ran 𝐿 = ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2016, 19eleqtrd 2914 . . . 4 (𝜑𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
21 eqid 2820 . . . . . 6 (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) = (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2221elrnmpog 7283 . . . . 5 (𝐴 ∈ ran 𝐿 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2316, 22syl 17 . . . 4 (𝜑 → (𝐴 ∈ ran (𝑥𝐵, 𝑦 ∈ (𝐵 ∖ {𝑥}) ↦ {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) ↔ ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
2420, 23mpbid 234 . . 3 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2515, 24r19.29d2r 3334 . 2 (𝜑 → ∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}))
26 difss 4105 . . . 4 (𝐵 ∖ {𝑥}) ⊆ 𝐵
27 simpr 487 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
28 simpll 765 . . . . . . 7 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))})
2927, 28eqtr4d 2858 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝐴 = (𝑥𝐿𝑦))
30 simplr 767 . . . . . 6 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → 𝑥𝑦)
3129, 30jca 514 . . . . 5 ((((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3231reximi 3242 . . . 4 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
33 ssrexv 4031 . . . 4 ((𝐵 ∖ {𝑥}) ⊆ 𝐵 → (∃𝑦 ∈ (𝐵 ∖ {𝑥})(𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦)))
3426, 32, 33mpsyl 68 . . 3 (∃𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3534reximi 3242 . 2 (∃𝑥𝐵𝑦 ∈ (𝐵 ∖ {𝑥})(((𝑥𝐿𝑦) = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))} ∧ 𝑥𝑦) ∧ 𝐴 = {𝑧𝐵 ∣ (𝑧 ∈ (𝑥𝐼𝑦) ∨ 𝑥 ∈ (𝑧𝐼𝑦) ∨ 𝑦 ∈ (𝑥𝐼𝑧))}) → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
3625, 35syl 17 1 (𝜑 → ∃𝑥𝐵𝑦𝐵 (𝐴 = (𝑥𝐿𝑦) ∧ 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3o 1081   = wceq 1536  wcel 2113  wne 3015  wrex 3138  {crab 3141  cdif 3930  wss 3933  {csn 4564  ran crn 5553  cfv 6352  (class class class)co 7153  cmpo 7155  Basecbs 16479  TarskiGcstrkg 26214  Itvcitv 26220  LineGclng 26221
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792  ax-sep 5200  ax-nul 5207  ax-pr 5327
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ne 3016  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3495  df-sbc 3771  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4465  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4836  df-br 5064  df-opab 5126  df-id 5457  df-xp 5558  df-rel 5559  df-cnv 5560  df-co 5561  df-dm 5562  df-rn 5563  df-iota 6311  df-fun 6354  df-fv 6360  df-ov 7156  df-oprab 7157  df-mpo 7158  df-trkg 26237
This theorem is referenced by:  tglnne  26412  tglndim0  26413  tglinethru  26420  tglnne0  26424  tglnpt2  26425  footexALT  26502  footex  26505  opptgdim2  26529
  Copyright terms: Public domain W3C validator