Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  tz6.12-afv2 Structured version   Visualization version   GIF version

Theorem tz6.12-afv2 43488
Description: Function value (Theorem 6.12(1) of [TakeutiZaring] p. 27), analogous to tz6.12 6693. (Contributed by AV, 5-Sep-2022.)
Assertion
Ref Expression
tz6.12-afv2 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Distinct variable groups:   𝑦,𝐴   𝑦,𝐹

Proof of Theorem tz6.12-afv2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ V)
2 vex 3497 . . . . . . . . . 10 𝑦 ∈ V
32a1i 11 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝑦 ∈ V)
4 df-br 5067 . . . . . . . . . . 11 (𝐴𝐹𝑦 ↔ ⟨𝐴, 𝑦⟩ ∈ 𝐹)
54biimpri 230 . . . . . . . . . 10 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
65adantl 484 . . . . . . . . 9 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴𝐹𝑦)
7 breldmg 5778 . . . . . . . . 9 ((𝐴 ∈ V ∧ 𝑦 ∈ V ∧ 𝐴𝐹𝑦) → 𝐴 ∈ dom 𝐹)
81, 3, 6, 7syl3anc 1367 . . . . . . . 8 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
9 simpl 485 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → 𝐴 ∈ dom 𝐹)
10 velsn 4583 . . . . . . . . . . . . . . 15 (𝑥 ∈ {𝐴} ↔ 𝑥 = 𝐴)
11 breq1 5069 . . . . . . . . . . . . . . . . . . 19 (𝐴 = 𝑥 → (𝐴𝐹𝑦𝑥𝐹𝑦))
124, 11syl5bbr 287 . . . . . . . . . . . . . . . . . 18 (𝐴 = 𝑥 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1312eqcoms 2829 . . . . . . . . . . . . . . . . 17 (𝑥 = 𝐴 → (⟨𝐴, 𝑦⟩ ∈ 𝐹𝑥𝐹𝑦))
1413eubidv 2672 . . . . . . . . . . . . . . . 16 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝑥𝐹𝑦))
1514biimpd 231 . . . . . . . . . . . . . . 15 (𝑥 = 𝐴 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1610, 15sylbi 219 . . . . . . . . . . . . . 14 (𝑥 ∈ {𝐴} → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝑥𝐹𝑦))
1716com12 32 . . . . . . . . . . . . 13 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1817adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝑥 ∈ {𝐴} → ∃!𝑦 𝑥𝐹𝑦))
1918ralrimiv 3181 . . . . . . . . . . 11 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
20 fnres 6474 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} ↔ ∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦)
21 fnfun 6453 . . . . . . . . . . . 12 ((𝐹 ↾ {𝐴}) Fn {𝐴} → Fun (𝐹 ↾ {𝐴}))
2220, 21sylbir 237 . . . . . . . . . . 11 (∀𝑥 ∈ {𝐴}∃!𝑦 𝑥𝐹𝑦 → Fun (𝐹 ↾ {𝐴}))
2319, 22syl 17 . . . . . . . . . 10 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → Fun (𝐹 ↾ {𝐴}))
249, 23jca 514 . . . . . . . . 9 ((𝐴 ∈ dom 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2524ex 415 . . . . . . . 8 (𝐴 ∈ dom 𝐹 → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
268, 25syl 17 . . . . . . 7 ((𝐴 ∈ V ∧ ⟨𝐴, 𝑦⟩ ∈ 𝐹) → (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴}))))
2726impr 457 . . . . . 6 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
28 df-dfat 43367 . . . . . 6 (𝐹 defAt 𝐴 ↔ (𝐴 ∈ dom 𝐹 ∧ Fun (𝐹 ↾ {𝐴})))
2927, 28sylibr 236 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → 𝐹 defAt 𝐴)
30 dfatafv2iota 43458 . . . . 5 (𝐹 defAt 𝐴 → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
3129, 30syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = (℩𝑦𝐴𝐹𝑦))
324bicomi 226 . . . . . . . . 9 (⟨𝐴, 𝑦⟩ ∈ 𝐹𝐴𝐹𝑦)
3332eubii 2670 . . . . . . . 8 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 ↔ ∃!𝑦 𝐴𝐹𝑦)
3433biimpi 218 . . . . . . 7 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → ∃!𝑦 𝐴𝐹𝑦)
355, 34anim12i 614 . . . . . 6 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
3635adantl 484 . . . . 5 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦))
37 iota1 6332 . . . . . 6 (∃!𝑦 𝐴𝐹𝑦 → (𝐴𝐹𝑦 ↔ (℩𝑦𝐴𝐹𝑦) = 𝑦))
3837biimpac 481 . . . . 5 ((𝐴𝐹𝑦 ∧ ∃!𝑦 𝐴𝐹𝑦) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
3936, 38syl 17 . . . 4 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (℩𝑦𝐴𝐹𝑦) = 𝑦)
4031, 39eqtrd 2856 . . 3 ((𝐴 ∈ V ∧ (⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹)) → (𝐹''''𝐴) = 𝑦)
4140ex 415 . 2 (𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
42 eu2ndop1stv 43373 . . . . 5 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹𝐴 ∈ V)
4342pm2.24d 154 . . . 4 (∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹 → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4443adantl 484 . . 3 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (¬ 𝐴 ∈ V → (𝐹''''𝐴) = 𝑦))
4544com12 32 . 2 𝐴 ∈ V → ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦))
4641, 45pm2.61i 184 1 ((⟨𝐴, 𝑦⟩ ∈ 𝐹 ∧ ∃!𝑦𝐴, 𝑦⟩ ∈ 𝐹) → (𝐹''''𝐴) = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  ∃!weu 2653  wral 3138  Vcvv 3494  {csn 4567  cop 4573   class class class wbr 5066  dom cdm 5555  cres 5557  cio 6312  Fun wfun 6349   Fn wfn 6350   defAt wdfat 43364  ''''cafv2 43456
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-res 5567  df-iota 6314  df-fun 6357  df-fn 6358  df-dfat 43367  df-afv2 43457
This theorem is referenced by:  tz6.12-1-afv2  43489
  Copyright terms: Public domain W3C validator