MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ufprim Structured version   Visualization version   GIF version

Theorem ufprim 22517
Description: An ultrafilter is a prime filter. (Contributed by Jeff Hankins, 1-Jan-2010.) (Revised by Mario Carneiro, 2-Aug-2015.)
Assertion
Ref Expression
ufprim ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐹𝐵𝐹) ↔ (𝐴𝐵) ∈ 𝐹))

Proof of Theorem ufprim
StepHypRef Expression
1 ufilfil 22512 . . . . . . 7 (𝐹 ∈ (UFil‘𝑋) → 𝐹 ∈ (Fil‘𝑋))
213ad2ant1 1129 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → 𝐹 ∈ (Fil‘𝑋))
32adantr 483 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴𝐹) → 𝐹 ∈ (Fil‘𝑋))
4 simpr 487 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴𝐹) → 𝐴𝐹)
5 unss 4160 . . . . . . . 8 ((𝐴𝑋𝐵𝑋) ↔ (𝐴𝐵) ⊆ 𝑋)
65biimpi 218 . . . . . . 7 ((𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
763adant1 1126 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐵) ⊆ 𝑋)
87adantr 483 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴𝐹) → (𝐴𝐵) ⊆ 𝑋)
9 ssun1 4148 . . . . . 6 𝐴 ⊆ (𝐴𝐵)
109a1i 11 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴𝐹) → 𝐴 ⊆ (𝐴𝐵))
11 filss 22461 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐹 ∧ (𝐴𝐵) ⊆ 𝑋𝐴 ⊆ (𝐴𝐵))) → (𝐴𝐵) ∈ 𝐹)
123, 4, 8, 10, 11syl13anc 1368 . . . 4 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐴𝐹) → (𝐴𝐵) ∈ 𝐹)
1312ex 415 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐴𝐹 → (𝐴𝐵) ∈ 𝐹))
142adantr 483 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐵𝐹) → 𝐹 ∈ (Fil‘𝑋))
15 simpr 487 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐵𝐹) → 𝐵𝐹)
167adantr 483 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐵𝐹) → (𝐴𝐵) ⊆ 𝑋)
17 ssun2 4149 . . . . . 6 𝐵 ⊆ (𝐴𝐵)
1817a1i 11 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐵𝐹) → 𝐵 ⊆ (𝐴𝐵))
19 filss 22461 . . . . 5 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐵𝐹 ∧ (𝐴𝐵) ⊆ 𝑋𝐵 ⊆ (𝐴𝐵))) → (𝐴𝐵) ∈ 𝐹)
2014, 15, 16, 18, 19syl13anc 1368 . . . 4 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ 𝐵𝐹) → (𝐴𝐵) ∈ 𝐹)
2120ex 415 . . 3 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (𝐵𝐹 → (𝐴𝐵) ∈ 𝐹))
2213, 21jaod 855 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐹𝐵𝐹) → (𝐴𝐵) ∈ 𝐹))
23 ufilb 22514 . . . . . . 7 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋) → (¬ 𝐴𝐹 ↔ (𝑋𝐴) ∈ 𝐹))
24233adant3 1128 . . . . . 6 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → (¬ 𝐴𝐹 ↔ (𝑋𝐴) ∈ 𝐹))
2524adantr 483 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → (¬ 𝐴𝐹 ↔ (𝑋𝐴) ∈ 𝐹))
2623ad2ant1 1129 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → 𝐹 ∈ (Fil‘𝑋))
27 difun2 4429 . . . . . . . . . . 11 ((𝐵𝐴) ∖ 𝐴) = (𝐵𝐴)
28 uncom 4129 . . . . . . . . . . . 12 (𝐵𝐴) = (𝐴𝐵)
2928difeq1i 4095 . . . . . . . . . . 11 ((𝐵𝐴) ∖ 𝐴) = ((𝐴𝐵) ∖ 𝐴)
3027, 29eqtr3i 2846 . . . . . . . . . 10 (𝐵𝐴) = ((𝐴𝐵) ∖ 𝐴)
3130ineq2i 4186 . . . . . . . . 9 (𝑋 ∩ (𝐵𝐴)) = (𝑋 ∩ ((𝐴𝐵) ∖ 𝐴))
32 indifcom 4249 . . . . . . . . 9 (𝐵 ∩ (𝑋𝐴)) = (𝑋 ∩ (𝐵𝐴))
33 indifcom 4249 . . . . . . . . 9 ((𝐴𝐵) ∩ (𝑋𝐴)) = (𝑋 ∩ ((𝐴𝐵) ∖ 𝐴))
3431, 32, 333eqtr4i 2854 . . . . . . . 8 (𝐵 ∩ (𝑋𝐴)) = ((𝐴𝐵) ∩ (𝑋𝐴))
35 filin 22462 . . . . . . . . 9 ((𝐹 ∈ (Fil‘𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → ((𝐴𝐵) ∩ (𝑋𝐴)) ∈ 𝐹)
362, 35syl3an1 1159 . . . . . . . 8 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → ((𝐴𝐵) ∩ (𝑋𝐴)) ∈ 𝐹)
3734, 36eqeltrid 2917 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋𝐴)) ∈ 𝐹)
38 simp13 1201 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → 𝐵𝑋)
39 inss1 4205 . . . . . . . 8 (𝐵 ∩ (𝑋𝐴)) ⊆ 𝐵
4039a1i 11 . . . . . . 7 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → (𝐵 ∩ (𝑋𝐴)) ⊆ 𝐵)
41 filss 22461 . . . . . . 7 ((𝐹 ∈ (Fil‘𝑋) ∧ ((𝐵 ∩ (𝑋𝐴)) ∈ 𝐹𝐵𝑋 ∧ (𝐵 ∩ (𝑋𝐴)) ⊆ 𝐵)) → 𝐵𝐹)
4226, 37, 38, 40, 41syl13anc 1368 . . . . . 6 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹 ∧ (𝑋𝐴) ∈ 𝐹) → 𝐵𝐹)
43423expia 1117 . . . . 5 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → ((𝑋𝐴) ∈ 𝐹𝐵𝐹))
4425, 43sylbid 242 . . . 4 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → (¬ 𝐴𝐹𝐵𝐹))
4544orrd 859 . . 3 (((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) ∧ (𝐴𝐵) ∈ 𝐹) → (𝐴𝐹𝐵𝐹))
4645ex 415 . 2 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐵) ∈ 𝐹 → (𝐴𝐹𝐵𝐹)))
4722, 46impbid 214 1 ((𝐹 ∈ (UFil‘𝑋) ∧ 𝐴𝑋𝐵𝑋) → ((𝐴𝐹𝐵𝐹) ↔ (𝐴𝐵) ∈ 𝐹))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083  wcel 2114  cdif 3933  cun 3934  cin 3935  wss 3936  cfv 6355  Filcfil 22453  UFilcufil 22507
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-mpt 5147  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-fbas 20542  df-fil 22454  df-ufil 22509
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator