Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xdivval Structured version   Visualization version   GIF version

Theorem xdivval 29430
Description: Value of division: the (unique) element 𝑥 such that (𝐵 · 𝑥) = 𝐴. This is meaningful only when 𝐵 is nonzero. (Contributed by Thierry Arnoux, 17-Dec-2016.)
Assertion
Ref Expression
xdivval ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵

Proof of Theorem xdivval
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eldifsn 4292 . . 3 (𝐵 ∈ (ℝ ∖ {0}) ↔ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0))
2 simpl 473 . . . . . 6 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → 𝑦 = 𝐴)
32eqeq2d 2631 . . . . 5 ((𝑦 = 𝐴𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝑦 ↔ (𝑧 ·e 𝑥) = 𝐴))
43riotabidva 6587 . . . 4 (𝑦 = 𝐴 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦) = (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴))
5 simpl 473 . . . . . . 7 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → 𝑧 = 𝐵)
65oveq1d 6625 . . . . . 6 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → (𝑧 ·e 𝑥) = (𝐵 ·e 𝑥))
76eqeq1d 2623 . . . . 5 ((𝑧 = 𝐵𝑥 ∈ ℝ*) → ((𝑧 ·e 𝑥) = 𝐴 ↔ (𝐵 ·e 𝑥) = 𝐴))
87riotabidva 6587 . . . 4 (𝑧 = 𝐵 → (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝐴) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
9 df-xdiv 29429 . . . 4 /𝑒 = (𝑦 ∈ ℝ*, 𝑧 ∈ (ℝ ∖ {0}) ↦ (𝑥 ∈ ℝ* (𝑧 ·e 𝑥) = 𝑦))
10 riotaex 6575 . . . 4 (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴) ∈ V
114, 8, 9, 10ovmpt2 6756 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ (ℝ ∖ {0})) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
121, 11sylan2br 493 . 2 ((𝐴 ∈ ℝ* ∧ (𝐵 ∈ ℝ ∧ 𝐵 ≠ 0)) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
13123impb 1257 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (𝐴 /𝑒 𝐵) = (𝑥 ∈ ℝ* (𝐵 ·e 𝑥) = 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cdif 3556  {csn 4153  crio 6570  (class class class)co 6610  cr 9886  0cc0 9887  *cxr 10024   ·e cxmu 11896   /𝑒 cxdiv 29428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860  df-riota 6571  df-ov 6613  df-oprab 6614  df-mpt2 6615  df-xdiv 29429
This theorem is referenced by:  xdivcld  29434  xdivmul  29436  rexdiv  29437  xdivpnfrp  29444
  Copyright terms: Public domain W3C validator