Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  xrssre Structured version   Visualization version   GIF version

Theorem xrssre 39377
Description: A subset of extended reals that does not contain +∞ and -∞ is a subset of the reals. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
xrssre.1 (𝜑𝐴 ⊆ ℝ*)
xrssre.2 (𝜑 → ¬ +∞ ∈ 𝐴)
xrssre.3 (𝜑 → ¬ -∞ ∈ 𝐴)
Assertion
Ref Expression
xrssre (𝜑𝐴 ⊆ ℝ)

Proof of Theorem xrssre
StepHypRef Expression
1 xrssre.1 . . . . 5 (𝜑𝐴 ⊆ ℝ*)
2 ssxr 10092 . . . . 5 (𝐴 ⊆ ℝ* → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
31, 2syl 17 . . . 4 (𝜑 → (𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
4 3orass 1039 . . . 4 ((𝐴 ⊆ ℝ ∨ +∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
53, 4sylib 208 . . 3 (𝜑 → (𝐴 ⊆ ℝ ∨ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴)))
65orcomd 403 . 2 (𝜑 → ((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ))
7 xrssre.2 . . . 4 (𝜑 → ¬ +∞ ∈ 𝐴)
8 xrssre.3 . . . 4 (𝜑 → ¬ -∞ ∈ 𝐴)
97, 8jca 554 . . 3 (𝜑 → (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
10 ioran 511 . . 3 (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ↔ (¬ +∞ ∈ 𝐴 ∧ ¬ -∞ ∈ 𝐴))
119, 10sylibr 224 . 2 (𝜑 → ¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴))
12 df-or 385 . . 3 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) ↔ (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
1312biimpi 206 . 2 (((+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) ∨ 𝐴 ⊆ ℝ) → (¬ (+∞ ∈ 𝐴 ∨ -∞ ∈ 𝐴) → 𝐴 ⊆ ℝ))
146, 11, 13sylc 65 1 (𝜑𝐴 ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wo 383  wa 384  w3o 1035  wcel 1988  wss 3567  cr 9920  +∞cpnf 10056  -∞cmnf 10057  *cxr 10058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-resscn 9978
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-mpt 4721  df-id 5014  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-pnf 10061  df-mnf 10062  df-xr 10063
This theorem is referenced by:  supminfxr2  39512
  Copyright terms: Public domain W3C validator