HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  dfex2 Unicode version

Theorem dfex2 198
Description: Alternative definition of the "there exists" quantifier. (Contributed by Mario Carneiro, 10-Oct-2014.)
Hypothesis
Ref Expression
dfex2.1 |- F:(al -> *)
Assertion
Ref Expression
dfex2 |- T. |= [(E.F) = (F(@F))]

Proof of Theorem dfex2
Dummy variable x is distinct from all other variables.
StepHypRef Expression
1 dfex2.1 . . 3 |- F:(al -> *)
2 wv 64 . . . . 5 |- x:al:al
31, 2ac 197 . . . 4 |- (Fx:al) |= (F(@F))
4 wtru 43 . . . 4 |- T.:*
53, 4adantl 56 . . 3 |- (T., (Fx:al)) |= (F(@F))
61, 5exlimdv2 166 . 2 |- (T., (E.F)) |= (F(@F))
7 wat 193 . . . . 5 |- @:((al -> *) -> al)
87, 1wc 50 . . . 4 |- (@F):al
91, 8ax4e 168 . . 3 |- (F(@F)) |= (E.F)
109, 4adantl 56 . 2 |- (T., (F(@F))) |= (E.F)
116, 10ded 84 1 |- T. |= [(E.F) = (F(@F))]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12  E.tex 123  @tat 191
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113  ax-wat 192  ax-ac 196
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator