Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > ax4e | Unicode version |
Description: Existential introduction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
ax4e.1 | |
ax4e.2 |
Ref | Expression |
---|---|
ax4e |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wv 64 | . . . . 5 | |
2 | ax4e.1 | . . . . . . 7 | |
3 | ax4e.2 | . . . . . . 7 | |
4 | 2, 3 | wc 50 | . . . . . 6 |
5 | wal 134 | . . . . . . 7 | |
6 | wim 137 | . . . . . . . . 9 | |
7 | wv 64 | . . . . . . . . . 10 | |
8 | 2, 7 | wc 50 | . . . . . . . . 9 |
9 | 6, 8, 1 | wov 72 | . . . . . . . 8 |
10 | 9 | wl 66 | . . . . . . 7 |
11 | 5, 10 | wc 50 | . . . . . 6 |
12 | 4, 11 | simpl 22 | . . . . 5 |
13 | 7, 3 | weqi 76 | . . . . . . . . . 10 |
14 | 13 | id 25 | . . . . . . . . 9 |
15 | 2, 7, 14 | ceq2 90 | . . . . . . . 8 |
16 | 6, 8, 1, 15 | oveq1 99 | . . . . . . 7 |
17 | 9, 3, 16 | cla4v 152 | . . . . . 6 |
18 | 17, 4 | adantl 56 | . . . . 5 |
19 | 1, 12, 18 | mpd 156 | . . . 4 |
20 | 19 | ex 158 | . . 3 |
21 | 20 | alrimiv 151 | . 2 |
22 | 2 | exval 143 | . . 3 |
23 | 4, 22 | a1i 28 | . 2 |
24 | 21, 23 | mpbir 87 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kbr 9 kct 10 wffMMJ2 11 wffMMJ2t 12 tim 121 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: cla4ev 169 19.8a 170 dfex2 198 axrep 220 |
Copyright terms: Public domain | W3C validator |