HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  ax4e Unicode version

Theorem ax4e 168
Description: Existential introduction. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
ax4e.1 |- F:(al -> *)
ax4e.2 |- A:al
Assertion
Ref Expression
ax4e |- (FA) |= (E.F)

Proof of Theorem ax4e
Dummy variables x p are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 wv 64 . . . . 5 |- p:*:*
2 ax4e.1 . . . . . . 7 |- F:(al -> *)
3 ax4e.2 . . . . . . 7 |- A:al
42, 3wc 50 . . . . . 6 |- (FA):*
5 wal 134 . . . . . . 7 |- A.:((al -> *) -> *)
6 wim 137 . . . . . . . . 9 |- ==> :(* -> (* -> *))
7 wv 64 . . . . . . . . . 10 |- x:al:al
82, 7wc 50 . . . . . . . . 9 |- (Fx:al):*
96, 8, 1wov 72 . . . . . . . 8 |- [(Fx:al) ==> p:*]:*
109wl 66 . . . . . . 7 |- \x:al [(Fx:al) ==> p:*]:(al -> *)
115, 10wc 50 . . . . . 6 |- (A.\x:al [(Fx:al) ==> p:*]):*
124, 11simpl 22 . . . . 5 |- ((FA), (A.\x:al [(Fx:al) ==> p:*])) |= (FA)
137, 3weqi 76 . . . . . . . . . 10 |- [x:al = A]:*
1413id 25 . . . . . . . . 9 |- [x:al = A] |= [x:al = A]
152, 7, 14ceq2 90 . . . . . . . 8 |- [x:al = A] |= [(Fx:al) = (FA)]
166, 8, 1, 15oveq1 99 . . . . . . 7 |- [x:al = A] |= [[(Fx:al) ==> p:*] = [(FA) ==> p:*]]
179, 3, 16cla4v 152 . . . . . 6 |- (A.\x:al [(Fx:al) ==> p:*]) |= [(FA) ==> p:*]
1817, 4adantl 56 . . . . 5 |- ((FA), (A.\x:al [(Fx:al) ==> p:*])) |= [(FA) ==> p:*]
191, 12, 18mpd 156 . . . 4 |- ((FA), (A.\x:al [(Fx:al) ==> p:*])) |= p:*
2019ex 158 . . 3 |- (FA) |= [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*]
2120alrimiv 151 . 2 |- (FA) |= (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])
222exval 143 . . 3 |- T. |= [(E.F) = (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])]
234, 22a1i 28 . 2 |- (FA) |= [(E.F) = (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])]
2421, 23mpbir 87 1 |- (FA) |= (E.F)
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by:  cla4ev  169  19.8a  170  dfex2  198  axrep  220
  Copyright terms: Public domain W3C validator