HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  exlimdv2 Unicode version

Theorem exlimdv2 166
Description: Existential elimination. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypotheses
Ref Expression
exlimdv2.1 |- F:(al -> *)
exlimdv2.2 |- (R, (Fx:al)) |= T
Assertion
Ref Expression
exlimdv2 |- (R, (E.F)) |= T
Distinct variable groups:   x,F   x,R   x,T   al,x

Proof of Theorem exlimdv2
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 exlimdv2.2 . . 3 |- (R, (Fx:al)) |= T
21ax-cb2 30 . 2 |- T:*
31ex 158 . . . 4 |- R |= [(Fx:al) ==> T]
43alrimiv 151 . . 3 |- R |= (A.\x:al [(Fx:al) ==> T])
5 wex 139 . . . 4 |- E.:((al -> *) -> *)
6 exlimdv2.1 . . . 4 |- F:(al -> *)
75, 6wc 50 . . 3 |- (E.F):*
84, 7adantr 55 . 2 |- (R, (E.F)) |= (A.\x:al [(Fx:al) ==> T])
91ax-cb1 29 . . . . . 6 |- (R, (Fx:al)):*
109wctl 33 . . . . 5 |- R:*
1110, 7simpr 23 . . . 4 |- (R, (E.F)) |= (E.F)
1210, 7wct 48 . . . . 5 |- (R, (E.F)):*
136exval 143 . . . . 5 |- T. |= [(E.F) = (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])]
1412, 13a1i 28 . . . 4 |- (R, (E.F)) |= [(E.F) = (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])]
1511, 14mpbi 82 . . 3 |- (R, (E.F)) |= (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*])
16 wim 137 . . . . 5 |- ==> :(* -> (* -> *))
17 wal 134 . . . . . 6 |- A.:((al -> *) -> *)
18 wv 64 . . . . . . . . 9 |- x:al:al
196, 18wc 50 . . . . . . . 8 |- (Fx:al):*
20 wv 64 . . . . . . . 8 |- p:*:*
2116, 19, 20wov 72 . . . . . . 7 |- [(Fx:al) ==> p:*]:*
2221wl 66 . . . . . 6 |- \x:al [(Fx:al) ==> p:*]:(al -> *)
2317, 22wc 50 . . . . 5 |- (A.\x:al [(Fx:al) ==> p:*]):*
2416, 23, 20wov 72 . . . 4 |- [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*]:*
2520, 2weqi 76 . . . . . . . . 9 |- [p:* = T]:*
2625id 25 . . . . . . . 8 |- [p:* = T] |= [p:* = T]
2716, 19, 20, 26oveq2 101 . . . . . . 7 |- [p:* = T] |= [[(Fx:al) ==> p:*] = [(Fx:al) ==> T]]
2821, 27leq 91 . . . . . 6 |- [p:* = T] |= [\x:al [(Fx:al) ==> p:*] = \x:al [(Fx:al) ==> T]]
2917, 22, 28ceq2 90 . . . . 5 |- [p:* = T] |= [(A.\x:al [(Fx:al) ==> p:*]) = (A.\x:al [(Fx:al) ==> T])]
3016, 23, 20, 29, 26oveq12 100 . . . 4 |- [p:* = T] |= [[(A.\x:al [(Fx:al) ==> p:*]) ==> p:*] = [(A.\x:al [(Fx:al) ==> T]) ==> T]]
3124, 2, 30cla4v 152 . . 3 |- (A.\p:* [(A.\x:al [(Fx:al) ==> p:*]) ==> p:*]) |= [(A.\x:al [(Fx:al) ==> T]) ==> T]
3215, 31syl 16 . 2 |- (R, (E.F)) |= [(A.\x:al [(Fx:al) ==> T]) ==> T]
332, 8, 32mpd 156 1 |- (R, (E.F)) |= T
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  [kbr 9  kct 10   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by:  exlimdv  167  dfex2  198
  Copyright terms: Public domain W3C validator