| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > exlimdv2 | Unicode version | ||
| Description: Existential elimination. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| exlimdv2.1 |
|
| exlimdv2.2 |
|
| Ref | Expression |
|---|---|
| exlimdv2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exlimdv2.2 |
. . 3
| |
| 2 | 1 | ax-cb2 30 |
. 2
|
| 3 | 1 | ex 158 |
. . . 4
|
| 4 | 3 | alrimiv 151 |
. . 3
|
| 5 | wex 139 |
. . . 4
| |
| 6 | exlimdv2.1 |
. . . 4
| |
| 7 | 5, 6 | wc 50 |
. . 3
|
| 8 | 4, 7 | adantr 55 |
. 2
|
| 9 | 1 | ax-cb1 29 |
. . . . . 6
|
| 10 | 9 | wctl 33 |
. . . . 5
|
| 11 | 10, 7 | simpr 23 |
. . . 4
|
| 12 | 10, 7 | wct 48 |
. . . . 5
|
| 13 | 6 | exval 143 |
. . . . 5
|
| 14 | 12, 13 | a1i 28 |
. . . 4
|
| 15 | 11, 14 | mpbi 82 |
. . 3
|
| 16 | wim 137 |
. . . . 5
| |
| 17 | wal 134 |
. . . . . 6
| |
| 18 | wv 64 |
. . . . . . . . 9
| |
| 19 | 6, 18 | wc 50 |
. . . . . . . 8
|
| 20 | wv 64 |
. . . . . . . 8
| |
| 21 | 16, 19, 20 | wov 72 |
. . . . . . 7
|
| 22 | 21 | wl 66 |
. . . . . 6
|
| 23 | 17, 22 | wc 50 |
. . . . 5
|
| 24 | 16, 23, 20 | wov 72 |
. . . 4
|
| 25 | 20, 2 | weqi 76 |
. . . . . . . . 9
|
| 26 | 25 | id 25 |
. . . . . . . 8
|
| 27 | 16, 19, 20, 26 | oveq2 101 |
. . . . . . 7
|
| 28 | 21, 27 | leq 91 |
. . . . . 6
|
| 29 | 17, 22, 28 | ceq2 90 |
. . . . 5
|
| 30 | 16, 23, 20, 29, 26 | oveq12 100 |
. . . 4
|
| 31 | 24, 2, 30 | cla4v 152 |
. . 3
|
| 32 | 15, 31 | syl 16 |
. 2
|
| 33 | 2, 8, 32 | mpd 156 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
| This theorem is referenced by: exlimdv 167 dfex2 198 |
| Copyright terms: Public domain | W3C validator |