HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  eximdv Unicode version

Theorem eximdv 185
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 9-Oct-2014.)
Hypothesis
Ref Expression
alimdv.1 |- (R, A) |= B
Assertion
Ref Expression
eximdv |- (R, (E.\x:al A)) |= (E.\x:al B)
Distinct variable groups:   x,R   al,x

Proof of Theorem eximdv
Dummy variable y is distinct from all other variables.
StepHypRef Expression
1 alimdv.1 . . 3 |- (R, A) |= B
21ax-cb2 30 . . . 4 |- B:*
3219.8a 170 . . 3 |- B |= (E.\x:al B)
41, 3syl 16 . 2 |- (R, A) |= (E.\x:al B)
51ax-cb1 29 . . . 4 |- (R, A):*
65wctl 33 . . 3 |- R:*
7 wv 64 . . 3 |- y:al:al
86, 7ax-17 105 . 2 |- T. |= [(\x:al Ry:al) = R]
9 wex 139 . . 3 |- E.:((al -> *) -> *)
102wl 66 . . 3 |- \x:al B:(al -> *)
119, 7ax-17 105 . . 3 |- T. |= [(\x:al E.y:al) = E.]
122, 7ax-hbl1 103 . . 3 |- T. |= [(\x:al \x:al By:al) = \x:al B]
139, 10, 7, 11, 12hbc 110 . 2 |- T. |= [(\x:al (E.\x:al B)y:al) = (E.\x:al B)]
144, 8, 13exlimd 183 1 |- (R, (E.\x:al A)) |= (E.\x:al B)
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6  T.kt 8  kct 10   |= wffMMJ2 11  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-ded 46  ax-wct 47  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-distrl 70  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator