Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > eximdv | GIF version |
Description: Deduction from Theorem 19.22 of [Margaris] p. 90. (Contributed by Mario Carneiro, 9-Oct-2014.) |
Ref | Expression |
---|---|
alimdv.1 | ⊢ (R, A)⊧B |
Ref | Expression |
---|---|
eximdv | ⊢ (R, (∃λx:α A))⊧(∃λx:α B) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | alimdv.1 | . . 3 ⊢ (R, A)⊧B | |
2 | 1 | ax-cb2 30 | . . . 4 ⊢ B:∗ |
3 | 2 | 19.8a 170 | . . 3 ⊢ B⊧(∃λx:α B) |
4 | 1, 3 | syl 16 | . 2 ⊢ (R, A)⊧(∃λx:α B) |
5 | 1 | ax-cb1 29 | . . . 4 ⊢ (R, A):∗ |
6 | 5 | wctl 33 | . . 3 ⊢ R:∗ |
7 | wv 64 | . . 3 ⊢ y:α:α | |
8 | 6, 7 | ax-17 105 | . 2 ⊢ ⊤⊧[(λx:α Ry:α) = R] |
9 | wex 139 | . . 3 ⊢ ∃:((α → ∗) → ∗) | |
10 | 2 | wl 66 | . . 3 ⊢ λx:α B:(α → ∗) |
11 | 9, 7 | ax-17 105 | . . 3 ⊢ ⊤⊧[(λx:α ∃y:α) = ∃] |
12 | 2, 7 | ax-hbl1 103 | . . 3 ⊢ ⊤⊧[(λx:α λx:α By:α) = λx:α B] |
13 | 9, 10, 7, 11, 12 | hbc 110 | . 2 ⊢ ⊤⊧[(λx:α (∃λx:α B)y:α) = (∃λx:α B)] |
14 | 4, 8, 13 | exlimd 183 | 1 ⊢ (R, (∃λx:α A))⊧(∃λx:α B) |
Colors of variables: type var term |
Syntax hints: tv 1 → ht 2 ∗hb 3 kc 5 λkl 6 ⊤kt 8 kct 10 ⊧wffMMJ2 11 ∃tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-ded 46 ax-wct 47 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |