HOLE Home Higher-Order Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HOLE Home  >  Th. List  >  exval Unicode version

Theorem exval 143
Description: Value of the 'there exists' predicate. (Contributed by Mario Carneiro, 8-Oct-2014.)
Hypothesis
Ref Expression
alval.1 |- F:(al -> *)
Assertion
Ref Expression
exval |- T. |= [(E.F) = (A.\q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*])]
Distinct variable groups:   x,q,al   q,F,x

Proof of Theorem exval
Dummy variable p is distinct from all other variables.
StepHypRef Expression
1 wex 139 . . 3 |- E.:((al -> *) -> *)
2 alval.1 . . 3 |- F:(al -> *)
31, 2wc 50 . 2 |- (E.F):*
4 df-ex 131 . . 3 |- T. |= [E. = \p:(al -> *) (A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*])]
51, 2, 4ceq1 89 . 2 |- T. |= [(E.F) = (\p:(al -> *) (A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*])F)]
6 wal 134 . . . 4 |- A.:((* -> *) -> *)
7 wim 137 . . . . . 6 |- ==> :(* -> (* -> *))
8 wal 134 . . . . . . 7 |- A.:((al -> *) -> *)
9 wv 64 . . . . . . . . . 10 |- p:(al -> *):(al -> *)
10 wv 64 . . . . . . . . . 10 |- x:al:al
119, 10wc 50 . . . . . . . . 9 |- (p:(al -> *)x:al):*
12 wv 64 . . . . . . . . 9 |- q:*:*
137, 11, 12wov 72 . . . . . . . 8 |- [(p:(al -> *)x:al) ==> q:*]:*
1413wl 66 . . . . . . 7 |- \x:al [(p:(al -> *)x:al) ==> q:*]:(al -> *)
158, 14wc 50 . . . . . 6 |- (A.\x:al [(p:(al -> *)x:al) ==> q:*]):*
167, 15, 12wov 72 . . . . 5 |- [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*]:*
1716wl 66 . . . 4 |- \q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*]:(* -> *)
186, 17wc 50 . . 3 |- (A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*]):*
199, 2weqi 76 . . . . . . . . . . 11 |- [p:(al -> *) = F]:*
2019id 25 . . . . . . . . . 10 |- [p:(al -> *) = F] |= [p:(al -> *) = F]
219, 10, 20ceq1 89 . . . . . . . . 9 |- [p:(al -> *) = F] |= [(p:(al -> *)x:al) = (Fx:al)]
227, 11, 12, 21oveq1 99 . . . . . . . 8 |- [p:(al -> *) = F] |= [[(p:(al -> *)x:al) ==> q:*] = [(Fx:al) ==> q:*]]
2313, 22leq 91 . . . . . . 7 |- [p:(al -> *) = F] |= [\x:al [(p:(al -> *)x:al) ==> q:*] = \x:al [(Fx:al) ==> q:*]]
248, 14, 23ceq2 90 . . . . . 6 |- [p:(al -> *) = F] |= [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) = (A.\x:al [(Fx:al) ==> q:*])]
257, 15, 12, 24oveq1 99 . . . . 5 |- [p:(al -> *) = F] |= [[(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*] = [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*]]
2616, 25leq 91 . . . 4 |- [p:(al -> *) = F] |= [\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*] = \q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*]]
276, 17, 26ceq2 90 . . 3 |- [p:(al -> *) = F] |= [(A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*]) = (A.\q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*])]
2818, 2, 27cl 116 . 2 |- T. |= [(\p:(al -> *) (A.\q:* [(A.\x:al [(p:(al -> *)x:al) ==> q:*]) ==> q:*])F) = (A.\q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*])]
293, 5, 28eqtri 95 1 |- T. |= [(E.F) = (A.\q:* [(A.\x:al [(Fx:al) ==> q:*]) ==> q:*])]
Colors of variables: type var term
Syntax hints:  tv 1   -> ht 2  *hb 3  kc 5  \kl 6   = ke 7  T.kt 8  [kbr 9   |= wffMMJ2 11  wffMMJ2t 12   ==> tim 121  A.tal 122  E.tex 123
This theorem was proved from axioms:  ax-syl 15  ax-jca 17  ax-simpl 20  ax-simpr 21  ax-id 24  ax-trud 26  ax-cb1 29  ax-cb2 30  ax-wctl 31  ax-wctr 32  ax-weq 40  ax-refl 42  ax-eqmp 45  ax-wc 49  ax-ceq 51  ax-wv 63  ax-wl 65  ax-beta 67  ax-distrc 68  ax-leq 69  ax-wov 71  ax-eqtypi 77  ax-eqtypri 80  ax-hbl1 103  ax-17 105  ax-inst 113
This theorem depends on definitions:  df-ov 73  df-al 126  df-an 128  df-im 129  df-ex 131
This theorem is referenced by:  exlimdv2  166  ax4e  168  exlimd  183
  Copyright terms: Public domain W3C validator