Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > HOLE Home > Th. List > exval | Unicode version |
Description: Value of the 'there exists' predicate. (Contributed by Mario Carneiro, 8-Oct-2014.) |
Ref | Expression |
---|---|
alval.1 |
Ref | Expression |
---|---|
exval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | wex 139 | . . 3 | |
2 | alval.1 | . . 3 | |
3 | 1, 2 | wc 50 | . 2 |
4 | df-ex 131 | . . 3 | |
5 | 1, 2, 4 | ceq1 89 | . 2 |
6 | wal 134 | . . . 4 | |
7 | wim 137 | . . . . . 6 | |
8 | wal 134 | . . . . . . 7 | |
9 | wv 64 | . . . . . . . . . 10 | |
10 | wv 64 | . . . . . . . . . 10 | |
11 | 9, 10 | wc 50 | . . . . . . . . 9 |
12 | wv 64 | . . . . . . . . 9 | |
13 | 7, 11, 12 | wov 72 | . . . . . . . 8 |
14 | 13 | wl 66 | . . . . . . 7 |
15 | 8, 14 | wc 50 | . . . . . 6 |
16 | 7, 15, 12 | wov 72 | . . . . 5 |
17 | 16 | wl 66 | . . . 4 |
18 | 6, 17 | wc 50 | . . 3 |
19 | 9, 2 | weqi 76 | . . . . . . . . . . 11 |
20 | 19 | id 25 | . . . . . . . . . 10 |
21 | 9, 10, 20 | ceq1 89 | . . . . . . . . 9 |
22 | 7, 11, 12, 21 | oveq1 99 | . . . . . . . 8 |
23 | 13, 22 | leq 91 | . . . . . . 7 |
24 | 8, 14, 23 | ceq2 90 | . . . . . 6 |
25 | 7, 15, 12, 24 | oveq1 99 | . . . . 5 |
26 | 16, 25 | leq 91 | . . . 4 |
27 | 6, 17, 26 | ceq2 90 | . . 3 |
28 | 18, 2, 27 | cl 116 | . 2 |
29 | 3, 5, 28 | eqtri 95 | 1 |
Colors of variables: type var term |
Syntax hints: tv 1 ht 2 hb 3 kc 5 kl 6 ke 7 kt 8 kbr 9 wffMMJ2 11 wffMMJ2t 12 tim 121 tal 122 tex 123 |
This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-ex 131 |
This theorem is referenced by: exlimdv2 166 ax4e 168 exlimd 183 |
Copyright terms: Public domain | W3C validator |