| Higher-Order Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HOLE Home > Th. List > orval | Unicode version | ||
| Description: Value of the disjunction. (Contributed by Mario Carneiro, 9-Oct-2014.) |
| Ref | Expression |
|---|---|
| imval.1 |
|
| imval.2 |
|
| Ref | Expression |
|---|---|
| orval |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wor 140 |
. . 3
| |
| 2 | imval.1 |
. . 3
| |
| 3 | imval.2 |
. . 3
| |
| 4 | 1, 2, 3 | wov 72 |
. 2
|
| 5 | df-or 132 |
. . 3
| |
| 6 | 1, 2, 3, 5 | oveq 102 |
. 2
|
| 7 | wal 134 |
. . . 4
| |
| 8 | wim 137 |
. . . . . 6
| |
| 9 | wv 64 |
. . . . . . 7
| |
| 10 | wv 64 |
. . . . . . 7
| |
| 11 | 8, 9, 10 | wov 72 |
. . . . . 6
|
| 12 | wv 64 |
. . . . . . . 8
| |
| 13 | 8, 12, 10 | wov 72 |
. . . . . . 7
|
| 14 | 8, 13, 10 | wov 72 |
. . . . . 6
|
| 15 | 8, 11, 14 | wov 72 |
. . . . 5
|
| 16 | 15 | wl 66 |
. . . 4
|
| 17 | 7, 16 | wc 50 |
. . 3
|
| 18 | 9, 2 | weqi 76 |
. . . . . . . 8
|
| 19 | 18 | id 25 |
. . . . . . 7
|
| 20 | 8, 9, 10, 19 | oveq1 99 |
. . . . . 6
|
| 21 | 8, 11, 14, 20 | oveq1 99 |
. . . . 5
|
| 22 | 15, 21 | leq 91 |
. . . 4
|
| 23 | 7, 16, 22 | ceq2 90 |
. . 3
|
| 24 | 8, 2, 10 | wov 72 |
. . . . . 6
|
| 25 | 8, 24, 14 | wov 72 |
. . . . 5
|
| 26 | 25 | wl 66 |
. . . 4
|
| 27 | 12, 3 | weqi 76 |
. . . . . . . . 9
|
| 28 | 27 | id 25 |
. . . . . . . 8
|
| 29 | 8, 12, 10, 28 | oveq1 99 |
. . . . . . 7
|
| 30 | 8, 13, 10, 29 | oveq1 99 |
. . . . . 6
|
| 31 | 8, 24, 14, 30 | oveq2 101 |
. . . . 5
|
| 32 | 25, 31 | leq 91 |
. . . 4
|
| 33 | 7, 26, 32 | ceq2 90 |
. . 3
|
| 34 | 17, 2, 3, 23, 33 | ovl 117 |
. 2
|
| 35 | 4, 6, 34 | eqtri 95 |
1
|
| Colors of variables: type var term |
| Syntax hints: tv 1
|
| This theorem was proved from axioms: ax-syl 15 ax-jca 17 ax-simpl 20 ax-simpr 21 ax-id 24 ax-trud 26 ax-cb1 29 ax-cb2 30 ax-wctl 31 ax-wctr 32 ax-weq 40 ax-refl 42 ax-eqmp 45 ax-wc 49 ax-ceq 51 ax-wv 63 ax-wl 65 ax-beta 67 ax-distrc 68 ax-leq 69 ax-distrl 70 ax-wov 71 ax-eqtypi 77 ax-eqtypri 80 ax-hbl1 103 ax-17 105 ax-inst 113 |
| This theorem depends on definitions: df-ov 73 df-al 126 df-an 128 df-im 129 df-or 132 |
| This theorem is referenced by: ecase 163 olc 164 orc 165 |
| Copyright terms: Public domain | W3C validator |