ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26-3an Unicode version

Theorem 19.26-3an 1476
Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
19.26-3an  |-  ( A. x ( ph  /\  ps  /\  ch )  <->  ( A. x ph  /\  A. x ps  /\  A. x ch ) )

Proof of Theorem 19.26-3an
StepHypRef Expression
1 19.26 1474 . . 3  |-  ( A. x ( ( ph  /\ 
ps )  /\  ch ) 
<->  ( A. x (
ph  /\  ps )  /\  A. x ch )
)
2 19.26 1474 . . . 4  |-  ( A. x ( ph  /\  ps )  <->  ( A. x ph  /\  A. x ps ) )
32anbi1i 455 . . 3  |-  ( ( A. x ( ph  /\ 
ps )  /\  A. x ch )  <->  ( ( A. x ph  /\  A. x ps )  /\  A. x ch ) )
41, 3bitri 183 . 2  |-  ( A. x ( ( ph  /\ 
ps )  /\  ch ) 
<->  ( ( A. x ph  /\  A. x ps )  /\  A. x ch ) )
5 df-3an 975 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
65albii 1463 . 2  |-  ( A. x ( ph  /\  ps  /\  ch )  <->  A. x
( ( ph  /\  ps )  /\  ch )
)
7 df-3an 975 . 2  |-  ( ( A. x ph  /\  A. x ps  /\  A. x ch )  <->  ( ( A. x ph  /\  A. x ps )  /\  A. x ch ) )
84, 6, 73bitr4i 211 1  |-  ( A. x ( ph  /\  ps  /\  ch )  <->  ( A. x ph  /\  A. x ps  /\  A. x ch ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 973   A.wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  hb3and  1483
  Copyright terms: Public domain W3C validator