ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.26-3an GIF version

Theorem 19.26-3an 1476
Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.)
Assertion
Ref Expression
19.26-3an (∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))

Proof of Theorem 19.26-3an
StepHypRef Expression
1 19.26 1474 . . 3 (∀𝑥((𝜑𝜓) ∧ 𝜒) ↔ (∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜒))
2 19.26 1474 . . . 4 (∀𝑥(𝜑𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓))
32anbi1i 455 . . 3 ((∀𝑥(𝜑𝜓) ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒))
41, 3bitri 183 . 2 (∀𝑥((𝜑𝜓) ∧ 𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒))
5 df-3an 975 . . 3 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
65albii 1463 . 2 (∀𝑥(𝜑𝜓𝜒) ↔ ∀𝑥((𝜑𝜓) ∧ 𝜒))
7 df-3an 975 . 2 ((∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒))
84, 6, 73bitr4i 211 1 (∀𝑥(𝜑𝜓𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  w3a 973  wal 1346
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1440  ax-gen 1442
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by:  hb3and  1483
  Copyright terms: Public domain W3C validator