Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.26-3an | GIF version |
Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.) |
Ref | Expression |
---|---|
19.26-3an | ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.26 1469 | . . 3 ⊢ (∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒)) | |
2 | 19.26 1469 | . . . 4 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
3 | 2 | anbi1i 454 | . . 3 ⊢ ((∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) |
4 | 1, 3 | bitri 183 | . 2 ⊢ (∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) |
5 | df-3an 970 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
6 | 5 | albii 1458 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) |
7 | df-3an 970 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) | |
8 | 4, 6, 7 | 3bitr4i 211 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) |
Colors of variables: wff set class |
Syntax hints: ∧ wa 103 ↔ wb 104 ∧ w3a 968 ∀wal 1341 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1435 ax-gen 1437 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: hb3and 1478 |
Copyright terms: Public domain | W3C validator |