| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 19.26-3an | GIF version | ||
| Description: Theorem 19.26 of [Margaris] p. 90 with triple conjunction. (Contributed by NM, 13-Sep-2011.) | 
| Ref | Expression | 
|---|---|
| 19.26-3an | ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 19.26 1495 | . . 3 ⊢ (∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ (∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒)) | |
| 2 | 19.26 1495 | . . . 4 ⊢ (∀𝑥(𝜑 ∧ 𝜓) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓)) | |
| 3 | 2 | anbi1i 458 | . . 3 ⊢ ((∀𝑥(𝜑 ∧ 𝜓) ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) | 
| 4 | 1, 3 | bitri 184 | . 2 ⊢ (∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) | 
| 5 | df-3an 982 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ((𝜑 ∧ 𝜓) ∧ 𝜒)) | |
| 6 | 5 | albii 1484 | . 2 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ ∀𝑥((𝜑 ∧ 𝜓) ∧ 𝜒)) | 
| 7 | df-3an 982 | . 2 ⊢ ((∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒) ↔ ((∀𝑥𝜑 ∧ ∀𝑥𝜓) ∧ ∀𝑥𝜒)) | |
| 8 | 4, 6, 7 | 3bitr4i 212 | 1 ⊢ (∀𝑥(𝜑 ∧ 𝜓 ∧ 𝜒) ↔ (∀𝑥𝜑 ∧ ∀𝑥𝜓 ∧ ∀𝑥𝜒)) | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 ↔ wb 105 ∧ w3a 980 ∀wal 1362 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: hb3and 1504 | 
| Copyright terms: Public domain | W3C validator |