ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  19.30dc Unicode version

Theorem 19.30dc 1615
Description: Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.)
Assertion
Ref Expression
19.30dc  |-  (DECID  E. x ps  ->  ( A. x
( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) ) )

Proof of Theorem 19.30dc
StepHypRef Expression
1 df-dc 825 . 2  |-  (DECID  E. x ps 
<->  ( E. x ps  \/  -.  E. x ps ) )
2 olc 701 . . . 4  |-  ( E. x ps  ->  ( A. x ph  \/  E. x ps ) )
32a1d 22 . . 3  |-  ( E. x ps  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) ) )
4 alnex 1487 . . . . 5  |-  ( A. x  -.  ps  <->  -.  E. x ps )
5 orel2 716 . . . . . 6  |-  ( -. 
ps  ->  ( ( ph  \/  ps )  ->  ph )
)
65al2imi 1446 . . . . 5  |-  ( A. x  -.  ps  ->  ( A. x ( ph  \/  ps )  ->  A. x ph ) )
74, 6sylbir 134 . . . 4  |-  ( -. 
E. x ps  ->  ( A. x ( ph  \/  ps )  ->  A. x ph ) )
8 orc 702 . . . 4  |-  ( A. x ph  ->  ( A. x ph  \/  E. x ps ) )
97, 8syl6 33 . . 3  |-  ( -. 
E. x ps  ->  ( A. x ( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) ) )
103, 9jaoi 706 . 2  |-  ( ( E. x ps  \/  -.  E. x ps )  ->  ( A. x (
ph  \/  ps )  ->  ( A. x ph  \/  E. x ps )
) )
111, 10sylbi 120 1  |-  (DECID  E. x ps  ->  ( A. x
( ph  \/  ps )  ->  ( A. x ph  \/  E. x ps ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    \/ wo 698  DECID wdc 824   A.wal 1341   E.wex 1480
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-gen 1437  ax-ie2 1482
This theorem depends on definitions:  df-bi 116  df-dc 825  df-tru 1346  df-fal 1349
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator