| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 19.30dc | GIF version | ||
| Description: Theorem 19.30 of [Margaris] p. 90, with an additional decidability condition. (Contributed by Jim Kingdon, 21-Jul-2018.) |
| Ref | Expression |
|---|---|
| 19.30dc | ⊢ (DECID ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dc 836 | . 2 ⊢ (DECID ∃𝑥𝜓 ↔ (∃𝑥𝜓 ∨ ¬ ∃𝑥𝜓)) | |
| 2 | olc 712 | . . . 4 ⊢ (∃𝑥𝜓 → (∀𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 3 | 2 | a1d 22 | . . 3 ⊢ (∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) |
| 4 | alnex 1513 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 ↔ ¬ ∃𝑥𝜓) | |
| 5 | orel2 727 | . . . . . 6 ⊢ (¬ 𝜓 → ((𝜑 ∨ 𝜓) → 𝜑)) | |
| 6 | 5 | al2imi 1472 | . . . . 5 ⊢ (∀𝑥 ¬ 𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → ∀𝑥𝜑)) |
| 7 | 4, 6 | sylbir 135 | . . . 4 ⊢ (¬ ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → ∀𝑥𝜑)) |
| 8 | orc 713 | . . . 4 ⊢ (∀𝑥𝜑 → (∀𝑥𝜑 ∨ ∃𝑥𝜓)) | |
| 9 | 7, 8 | syl6 33 | . . 3 ⊢ (¬ ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) |
| 10 | 3, 9 | jaoi 717 | . 2 ⊢ ((∃𝑥𝜓 ∨ ¬ ∃𝑥𝜓) → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) |
| 11 | 1, 10 | sylbi 121 | 1 ⊢ (DECID ∃𝑥𝜓 → (∀𝑥(𝜑 ∨ 𝜓) → (∀𝑥𝜑 ∨ ∃𝑥𝜓))) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 ∨ wo 709 DECID wdc 835 ∀wal 1362 ∃wex 1506 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-gen 1463 ax-ie2 1508 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-fal 1370 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |