ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  orbi2i Unicode version

Theorem orbi2i 764
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.)
Hypothesis
Ref Expression
orbi2i.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
orbi2i  |-  ( ( ch  \/  ph )  <->  ( ch  \/  ps )
)

Proof of Theorem orbi2i
StepHypRef Expression
1 orbi2i.1 . . . 4  |-  ( ph  <->  ps )
21biimpi 120 . . 3  |-  ( ph  ->  ps )
32orim2i 763 . 2  |-  ( ( ch  \/  ph )  ->  ( ch  \/  ps ) )
41biimpri 133 . . 3  |-  ( ps 
->  ph )
54orim2i 763 . 2  |-  ( ( ch  \/  ps )  ->  ( ch  \/  ph ) )
63, 5impbii 126 1  |-  ( ( ch  \/  ph )  <->  ( ch  \/  ps )
)
Colors of variables: wff set class
Syntax hints:    <-> wb 105    \/ wo 710
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711
This theorem depends on definitions:  df-bi 117
This theorem is referenced by:  orbi1i  765  orbi12i  766  orass  769  or4  773  or42  774  orordir  776  dcnnOLD  851  orbididc  956  3orcomb  990  excxor  1398  xordc  1412  nf4dc  1694  nf4r  1695  19.44  1706  dveeq2  1839  dvelimALT  2039  dvelimfv  2040  dvelimor  2047  dcne  2389  unass  3338  undi  3429  undif3ss  3442  symdifxor  3447  undif4  3531  iinuniss  4024  ordsucim  4566  suc11g  4623  qfto  5091  nntri3or  6602  reapcotr  8706  elnn0  9332  elxnn0  9395  elnn1uz2  9763  nn01to3  9773  elxr  9933  xaddcom  10018  xnegdi  10025  xpncan  10028  xleadd1a  10030  lcmdvds  12516  mulgcddvds  12531  cncongr2  12541  pythagtrip  12721  bj-peano4  16090  apdifflemr  16188
  Copyright terms: Public domain W3C validator