Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2i | Unicode version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 |
Ref | Expression |
---|---|
orbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | orim2i 756 | . 2 |
4 | 1 | biimpri 132 | . . 3 |
5 | 4 | orim2i 756 | . 2 |
6 | 3, 5 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1i 758 orbi12i 759 orass 762 or4 766 or42 767 orordir 769 dcnnOLD 844 orbididc 948 3orcomb 982 excxor 1373 xordc 1387 nf4dc 1663 nf4r 1664 19.44 1675 dveeq2 1808 dvelimALT 2003 dvelimfv 2004 dvelimor 2011 dcne 2351 unass 3284 undi 3375 undif3ss 3388 symdifxor 3393 undif4 3477 iinuniss 3955 ordsucim 4484 suc11g 4541 qfto 5000 nntri3or 6472 reapcotr 8517 elnn0 9137 elxnn0 9200 elnn1uz2 9566 nn01to3 9576 elxr 9733 xaddcom 9818 xnegdi 9825 xpncan 9828 xleadd1a 9830 lcmdvds 12033 mulgcddvds 12048 cncongr2 12058 pythagtrip 12237 bj-peano4 13990 apdifflemr 14079 |
Copyright terms: Public domain | W3C validator |