| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | Unicode version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 |
|
| Ref | Expression |
|---|---|
| orbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | orim2i 763 |
. 2
|
| 4 | 1 | biimpri 133 |
. . 3
|
| 5 | 4 | orim2i 763 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 765 orbi12i 766 orass 769 or4 773 or42 774 orordir 776 dcnnOLD 851 orbididc 956 3orcomb 990 excxor 1398 xordc 1412 nf4dc 1694 nf4r 1695 19.44 1706 dveeq2 1839 dvelimALT 2039 dvelimfv 2040 dvelimor 2047 dcne 2389 unass 3338 undi 3429 undif3ss 3442 symdifxor 3447 undif4 3531 iinuniss 4024 ordsucim 4566 suc11g 4623 qfto 5091 nntri3or 6602 reapcotr 8706 elnn0 9332 elxnn0 9395 elnn1uz2 9763 nn01to3 9773 elxr 9933 xaddcom 10018 xnegdi 10025 xpncan 10028 xleadd1a 10030 lcmdvds 12516 mulgcddvds 12531 cncongr2 12541 pythagtrip 12721 bj-peano4 16090 apdifflemr 16188 |
| Copyright terms: Public domain | W3C validator |