Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > orbi2i | Unicode version |
Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
Ref | Expression |
---|---|
orbi2i.1 |
Ref | Expression |
---|---|
orbi2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi2i.1 | . . . 4 | |
2 | 1 | biimpi 119 | . . 3 |
3 | 2 | orim2i 751 | . 2 |
4 | 1 | biimpri 132 | . . 3 |
5 | 4 | orim2i 751 | . 2 |
6 | 3, 5 | impbii 125 | 1 |
Colors of variables: wff set class |
Syntax hints: wb 104 wo 698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 |
This theorem depends on definitions: df-bi 116 |
This theorem is referenced by: orbi1i 753 orbi12i 754 orass 757 or4 761 or42 762 orordir 764 dcnnOLD 835 orbididc 938 3orcomb 972 excxor 1360 xordc 1374 nf4dc 1650 nf4r 1651 19.44 1662 dveeq2 1795 dvelimALT 1990 dvelimfv 1991 dvelimor 1998 dcne 2338 unass 3264 undi 3355 undif3ss 3368 symdifxor 3373 undif4 3456 iinuniss 3931 ordsucim 4458 suc11g 4515 qfto 4974 nntri3or 6437 reapcotr 8467 elnn0 9086 elxnn0 9149 elnn1uz2 9511 nn01to3 9519 elxr 9676 xaddcom 9758 xnegdi 9765 xpncan 9768 xleadd1a 9770 lcmdvds 11947 mulgcddvds 11962 cncongr2 11972 bj-peano4 13501 apdifflemr 13589 |
Copyright terms: Public domain | W3C validator |