| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | Unicode version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 |
|
| Ref | Expression |
|---|---|
| orbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | orim2i 763 |
. 2
|
| 4 | 1 | biimpri 133 |
. . 3
|
| 5 | 4 | orim2i 763 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 765 orbi12i 766 orass 769 or4 773 or42 774 orordir 776 dcnnOLD 851 orbididc 956 3orcomb 990 excxor 1398 xordc 1412 nf4dc 1693 nf4r 1694 19.44 1705 dveeq2 1838 dvelimALT 2038 dvelimfv 2039 dvelimor 2046 dcne 2387 unass 3330 undi 3421 undif3ss 3434 symdifxor 3439 undif4 3523 iinuniss 4010 ordsucim 4548 suc11g 4605 qfto 5072 nntri3or 6579 reapcotr 8671 elnn0 9297 elxnn0 9360 elnn1uz2 9728 nn01to3 9738 elxr 9898 xaddcom 9983 xnegdi 9990 xpncan 9993 xleadd1a 9995 lcmdvds 12401 mulgcddvds 12416 cncongr2 12426 pythagtrip 12606 bj-peano4 15891 apdifflemr 15986 |
| Copyright terms: Public domain | W3C validator |