| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > orbi2i | Unicode version | ||
| Description: Inference adding a left disjunct to both sides of a logical equivalence. (Contributed by NM, 5-Aug-1993.) (Proof shortened by Wolf Lammen, 12-Dec-2012.) |
| Ref | Expression |
|---|---|
| orbi2i.1 |
|
| Ref | Expression |
|---|---|
| orbi2i |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | orbi2i.1 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | orim2i 762 |
. 2
|
| 4 | 1 | biimpri 133 |
. . 3
|
| 5 | 4 | orim2i 762 |
. 2
|
| 6 | 3, 5 | impbii 126 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 |
| This theorem depends on definitions: df-bi 117 |
| This theorem is referenced by: orbi1i 764 orbi12i 765 orass 768 or4 772 or42 773 orordir 775 dcnnOLD 850 orbididc 955 3orcomb 989 excxor 1389 xordc 1403 nf4dc 1684 nf4r 1685 19.44 1696 dveeq2 1829 dvelimALT 2029 dvelimfv 2030 dvelimor 2037 dcne 2378 unass 3321 undi 3412 undif3ss 3425 symdifxor 3430 undif4 3514 iinuniss 4000 ordsucim 4537 suc11g 4594 qfto 5060 nntri3or 6560 reapcotr 8642 elnn0 9268 elxnn0 9331 elnn1uz2 9698 nn01to3 9708 elxr 9868 xaddcom 9953 xnegdi 9960 xpncan 9963 xleadd1a 9965 lcmdvds 12272 mulgcddvds 12287 cncongr2 12297 pythagtrip 12477 bj-peano4 15685 apdifflemr 15778 |
| Copyright terms: Public domain | W3C validator |