Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 19.44 | GIF version |
Description: Theorem 19.44 of [Margaris] p. 90. (Contributed by NM, 12-Mar-1993.) |
Ref | Expression |
---|---|
19.44.1 | ⊢ Ⅎ𝑥𝜓 |
Ref | Expression |
---|---|
19.44 | ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 19.43 1616 | . 2 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ ∃𝑥𝜓)) | |
2 | 19.44.1 | . . . 4 ⊢ Ⅎ𝑥𝜓 | |
3 | 2 | 19.9 1632 | . . 3 ⊢ (∃𝑥𝜓 ↔ 𝜓) |
4 | 3 | orbi2i 752 | . 2 ⊢ ((∃𝑥𝜑 ∨ ∃𝑥𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) |
5 | 1, 4 | bitri 183 | 1 ⊢ (∃𝑥(𝜑 ∨ 𝜓) ↔ (∃𝑥𝜑 ∨ 𝜓)) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∨ wo 698 Ⅎwnf 1448 ∃wex 1480 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-4 1498 ax-ial 1522 |
This theorem depends on definitions: df-bi 116 df-nf 1449 |
This theorem is referenced by: eeor 1683 |
Copyright terms: Public domain | W3C validator |