ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcpasc Unicode version

Theorem bcpasc 10759
Description: Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 9229 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 elfzp12 10112 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
3 nn0uz 9575 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleq2s 2282 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
51, 4syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
6 1p0e1 9048 . . . . . . . 8  |-  ( 1  +  0 )  =  1
7 bcn0 10748 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  0 )  =  1 )
8 0z 9277 . . . . . . . . . . 11  |-  0  e.  ZZ
9 1z 9292 . . . . . . . . . . 11  |-  1  e.  ZZ
10 zsubcl 9307 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  -  1 )  e.  ZZ )
118, 9, 10mp2an 426 . . . . . . . . . 10  |-  ( 0  -  1 )  e.  ZZ
12 0re 7970 . . . . . . . . . . . 12  |-  0  e.  RR
13 ltm1 8816 . . . . . . . . . . . 12  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
1412, 13ax-mp 5 . . . . . . . . . . 11  |-  ( 0  -  1 )  <  0
1514orci 732 . . . . . . . . . 10  |-  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) )
16 bcval4 10745 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 0  -  1 )  e.  ZZ  /\  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) ) )  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
1711, 15, 16mp3an23 1339 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
187, 17oveq12d 5906 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( 1  +  0 ) )
19 bcn0 10748 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
201, 19syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
216, 18, 203eqtr4a 2246 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( ( N  + 
1 )  _C  0
) )
22 oveq2 5896 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  K )  =  ( N  _C  0
) )
23 oveq1 5895 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  -  1 )  =  ( 0  -  1 ) )
2423oveq2d 5904 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  ( K  - 
1 ) )  =  ( N  _C  (
0  -  1 ) ) )
2522, 24oveq12d 5906 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) ) )
26 oveq2 5896 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  0 ) )
2725, 26eqeq12d 2202 . . . . . . 7  |-  ( K  =  0  ->  (
( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K )  <->  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) )  =  ( ( N  +  1 )  _C  0 ) ) )
2821, 27syl5ibrcom 157 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
29 simpr 110 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
30 0p1e1 9046 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3130oveq1i 5898 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
3229, 31eleqtrdi 2280 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
33 nn0p1nn 9228 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
34 nnuz 9576 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3533, 34eleqtrdi 2280 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  1 )
)
36 fzm1 10113 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) ) )
3736biimpa 296 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ( ZZ>= ` 
1 )  /\  K  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )
3835, 37sylan 283 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) )
39 nn0cn 9199 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
40 ax-1cn 7917 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 pncan 8176 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4239, 40, 41sylancl 413 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4342oveq2d 5904 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
4443eleq2d 2257 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( K  e.  ( 1 ... ( ( N  + 
1 )  -  1 ) )  <->  K  e.  ( 1 ... N
) ) )
4544biimpa 296 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  K  e.  ( 1 ... N ) )
46 1eluzge0 9587 . . . . . . . . . . . . . . 15  |-  1  e.  ( ZZ>= `  0 )
47 fzss1 10076 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
4846, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  C_  ( 0 ... N
)
4948sseli 3163 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
50 bcp1n 10754 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5149, 50syl 14 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
52 bcrpcl 10746 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
5349, 52syl 14 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  RR+ )
5453rpcnd 9711 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  CC )
55 elfzuz2 10042 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5655, 34eleqtrrdi 2281 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
5756peano2nnd 8947 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  NN )
5857nncnd 8946 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  CC )
5956nncnd 8946 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
60 1cnd 7986 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
61 elfzelz 10038 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
6261zcnd 9389 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
6359, 60, 62addsubd 8302 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
64 fznn0sub 10070 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
65 nn0p1nn 9228 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
6664, 65syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
6763, 66eqeltrd 2264 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
6867nncnd 8946 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
6967nnap0d 8978 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K ) #  0 )
7054, 58, 68, 69div12apd 8797 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( N  +  1 )  x.  ( ( N  _C  K )  /  (
( N  +  1 )  -  K ) ) ) )
7167nnrpd 9707 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR+ )
7253, 71rpdivcld 9727 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  RR+ )
7372rpcnd 9711 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  CC )
7458, 73mulcomd 7992 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  x.  ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7570, 74eqtrd 2220 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7658, 62npcand 8285 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  +  K )  =  ( N  + 
1 ) )
7776oveq2d 5904 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7873, 68, 62adddid 7995 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
7975, 77, 783eqtr2d 2226 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8054, 68, 69divcanap1d 8761 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  =  ( N  _C  K ) )
81 elfznn 10067 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
8281nnap0d 8978 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  K #  0 )
8354, 68, 62, 69, 82divdivap2d 8793 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( ( ( N  _C  K )  x.  K )  / 
( ( N  + 
1 )  -  K
) ) )
84 bcm1k 10753 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
8559, 62, 60subsub3d 8311 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
8685oveq1d 5903 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  +  1 )  -  K )  /  K ) )
8786oveq2d 5904 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( N  _C  ( K  - 
1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K
) ) )
8884, 87eqtrd 2220 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( ( N  + 
1 )  -  K
)  /  K ) ) )
89 fzelp1 10087 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
9057nnzd 9387 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  ZZ )
91 elfzm1b 10111 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ) )
9261, 90, 91syl2anc 411 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... ( N  + 
1 ) )  <->  ( K  -  1 )  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ) )
9389, 92mpbid 147 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) ) )
9459, 40, 41sylancl 413 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  1 )  =  N )
9594oveq2d 5904 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
9693, 95eleqtrd 2266 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
97 bcrpcl 10746 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9896, 97syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9998rpcnd 9711 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  CC )
10081nnrpd 9707 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  RR+ )
10171, 100rpdivcld 9727 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  RR+ )
102101rpcnd 9711 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  CC )
10368, 62, 69, 82divap0d 8776 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K ) #  0 )
10454, 99, 102, 103divmulap3d 8795 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( ( N  + 
1 )  -  K
)  /  K ) )  =  ( N  _C  ( K  - 
1 ) )  <->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K ) ) ) )
10588, 104mpbird 167 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( N  _C  ( K  -  1
) ) )
10654, 62, 68, 69div23apd 8798 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  x.  K
)  /  ( ( N  +  1 )  -  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  K ) )
10783, 105, 1063eqtr3rd 2229 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  K )  =  ( N  _C  ( K  -  1
) ) )
10880, 107oveq12d 5906 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  K ) )  =  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) ) )
10951, 79, 1083eqtrrd 2225 . . . . . . . . . . 11  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
11045, 109syl 14 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
111 oveq2 5896 . . . . . . . . . . . . 13  |-  ( K  =  ( N  + 
1 )  ->  ( N  _C  K )  =  ( N  _C  ( N  +  1 ) ) )
11233nnzd 9387 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
113 nn0re 9198 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  N  e.  RR )
114113ltp1d 8900 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  < 
( N  +  1 ) )
115114olcd 735 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  <  0  \/  N  <  ( N  +  1 ) ) )
116 bcval4 10745 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
117112, 115, 116mpd3an23 1349 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  _C  ( N  + 
1 ) )  =  0 )
118111, 117sylan9eqr 2242 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  K )  =  0 )
119 oveq1 5895 . . . . . . . . . . . . . . 15  |-  ( K  =  ( N  + 
1 )  ->  ( K  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
120119, 42sylan9eqr 2242 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( K  - 
1 )  =  N )
121120oveq2d 5904 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  ( N  _C  N ) )
122 bcnn 10750 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
123122adantr 276 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  N )  =  1 )
124121, 123eqtrd 2220 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  1 )
125118, 124oveq12d 5906 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( 0  +  1 ) )
126 oveq2 5896 . . . . . . . . . . . 12  |-  ( K  =  ( N  + 
1 )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  ( N  +  1 ) ) )
127 bcnn 10750 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
1281, 127syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
129126, 128sylan9eqr 2242 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  +  1 )  _C  K )  =  1 )
13030, 125, 1293eqtr4a 2246 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
131110, 130jaodan 798 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( K  e.  (
1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13238, 131syldan 282 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13332, 132syldan 282 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
134133ex 115 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
13528, 134jaod 718 . . . . 5  |-  ( N  e.  NN0  ->  ( ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
1365, 135sylbid 150 . . . 4  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
137136imp 124 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
138137adantlr 477 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
139 00id 8111 . . 3  |-  ( 0  +  0 )  =  0
140 fzelp1 10087 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
141140con3i 633 . . . . 5  |-  ( -.  K  e.  ( 0 ... ( N  + 
1 ) )  ->  -.  K  e.  (
0 ... N ) )
142 bcval3 10744 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1431423expa 1204 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
144141, 143sylan2 286 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  K )  =  0 )
145 simpll 527 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
146 simplr 528 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  K  e.  ZZ )
147 peano2zm 9304 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
148146, 147syl 14 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
14939adantr 276 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  CC )
150149, 40, 41sylancl 413 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  + 
1 )  -  1 )  =  N )
151150oveq2d 5904 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
152151eleq2d 2257 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... N ) ) )
153 id 19 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
1541nn0zd 9386 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
155153, 154, 91syl2anr 290 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ) )
156 fzp1ss 10086 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
1578, 156ax-mp 5 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
15831, 157eqsstrri 3200 . . . . . . . . 9  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
159158sseli 3163 . . . . . . . 8  |-  ( K  e.  ( 1 ... ( N  +  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
160155, 159syl6bir 164 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
161152, 160sylbird 170 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
162161con3dimp 636 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  ( K  -  1
)  e.  ( 0 ... N ) )
163 bcval3 10744 . . . . 5  |-  ( ( N  e.  NN0  /\  ( K  -  1
)  e.  ZZ  /\  -.  ( K  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( K  -  1
) )  =  0 )
164145, 148, 162, 163syl3anc 1248 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( K  - 
1 ) )  =  0 )
165144, 164oveq12d 5906 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( 0  +  0 ) )
166145, 1syl 14 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  NN0 )
167 simpr 110 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )
168 bcval3 10744 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  +  1 )  _C  K )  =  0 )
169166, 146, 167, 168syl3anc 1248 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  +  1 )  _C  K )  =  0 )
170139, 165, 1693eqtr4a 2246 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
171 simpr 110 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
172 0zd 9278 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
173112adantr 276 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
174 fzdcel 10053 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> DECID  K  e.  ( 0 ... ( N  +  1 ) ) )
175 exmiddc 837 . . . 4  |-  (DECID  K  e.  ( 0 ... ( N  +  1 ) )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
176174, 175syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
177171, 172, 173, 176syl3anc 1248 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
178138, 170, 177mpjaodan 799 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    \/ wo 709  DECID wdc 835    /\ w3a 979    = wceq 1363    e. wcel 2158    C_ wss 3141   class class class wbr 4015   ` cfv 5228  (class class class)co 5888   CCcc 7822   RRcr 7823   0cc0 7824   1c1 7825    + caddc 7827    x. cmul 7829    < clt 8005    - cmin 8141    / cdiv 8642   NNcn 8932   NN0cn0 9189   ZZcz 9266   ZZ>=cuz 9541   RR+crp 9666   ...cfz 10021    _C cbc 10740
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7915  ax-resscn 7916  ax-1cn 7917  ax-1re 7918  ax-icn 7919  ax-addcl 7920  ax-addrcl 7921  ax-mulcl 7922  ax-mulrcl 7923  ax-addcom 7924  ax-mulcom 7925  ax-addass 7926  ax-mulass 7927  ax-distr 7928  ax-i2m1 7929  ax-0lt1 7930  ax-1rid 7931  ax-0id 7932  ax-rnegex 7933  ax-precex 7934  ax-cnre 7935  ax-pre-ltirr 7936  ax-pre-ltwlin 7937  ax-pre-lttrn 7938  ax-pre-apti 7939  ax-pre-ltadd 7940  ax-pre-mulgt0 7941  ax-pre-mulext 7942
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6154  df-2nd 6155  df-recs 6319  df-frec 6405  df-pnf 8007  df-mnf 8008  df-xr 8009  df-ltxr 8010  df-le 8011  df-sub 8143  df-neg 8144  df-reap 8545  df-ap 8552  df-div 8643  df-inn 8933  df-n0 9190  df-z 9267  df-uz 9542  df-q 9633  df-rp 9667  df-fz 10022  df-seqfrec 10459  df-fac 10719  df-bc 10741
This theorem is referenced by:  bccl  10760  bcn2m1  10762  bcn2p1  10763  binomlem  11504  bcxmas  11510  ex-bc  14752
  Copyright terms: Public domain W3C validator