ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bcpasc Unicode version

Theorem bcpasc 10679
Description: Pascal's rule for the binomial coefficient, generalized to all integers  K. Equation 2 of [Gleason] p. 295. (Contributed by NM, 13-Jul-2005.) (Revised by Mario Carneiro, 10-Mar-2014.)
Assertion
Ref Expression
bcpasc  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )

Proof of Theorem bcpasc
StepHypRef Expression
1 peano2nn0 9154 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e. 
NN0 )
2 elfzp12 10034 . . . . . . 7  |-  ( ( N  +  1 )  e.  ( ZZ>= `  0
)  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
3 nn0uz 9500 . . . . . . 7  |-  NN0  =  ( ZZ>= `  0 )
42, 3eleq2s 2261 . . . . . 6  |-  ( ( N  +  1 )  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
51, 4syl 14 . . . . 5  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  <->  ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) ) ) )
6 1p0e1 8973 . . . . . . . 8  |-  ( 1  +  0 )  =  1
7 bcn0 10668 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  0 )  =  1 )
8 0z 9202 . . . . . . . . . . 11  |-  0  e.  ZZ
9 1z 9217 . . . . . . . . . . 11  |-  1  e.  ZZ
10 zsubcl 9232 . . . . . . . . . . 11  |-  ( ( 0  e.  ZZ  /\  1  e.  ZZ )  ->  ( 0  -  1 )  e.  ZZ )
118, 9, 10mp2an 423 . . . . . . . . . 10  |-  ( 0  -  1 )  e.  ZZ
12 0re 7899 . . . . . . . . . . . 12  |-  0  e.  RR
13 ltm1 8741 . . . . . . . . . . . 12  |-  ( 0  e.  RR  ->  (
0  -  1 )  <  0 )
1412, 13ax-mp 5 . . . . . . . . . . 11  |-  ( 0  -  1 )  <  0
1514orci 721 . . . . . . . . . 10  |-  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) )
16 bcval4 10665 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  ( 0  -  1 )  e.  ZZ  /\  ( ( 0  -  1 )  <  0  \/  N  <  ( 0  -  1 ) ) )  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
1711, 15, 16mp3an23 1319 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  _C  ( 0  -  1 ) )  =  0 )
187, 17oveq12d 5860 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( 1  +  0 ) )
19 bcn0 10668 . . . . . . . . 9  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
201, 19syl 14 . . . . . . . 8  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  0 )  =  1 )
216, 18, 203eqtr4a 2225 . . . . . . 7  |-  ( N  e.  NN0  ->  ( ( N  _C  0 )  +  ( N  _C  ( 0  -  1 ) ) )  =  ( ( N  + 
1 )  _C  0
) )
22 oveq2 5850 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  K )  =  ( N  _C  0
) )
23 oveq1 5849 . . . . . . . . . 10  |-  ( K  =  0  ->  ( K  -  1 )  =  ( 0  -  1 ) )
2423oveq2d 5858 . . . . . . . . 9  |-  ( K  =  0  ->  ( N  _C  ( K  - 
1 ) )  =  ( N  _C  (
0  -  1 ) ) )
2522, 24oveq12d 5860 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) ) )
26 oveq2 5850 . . . . . . . 8  |-  ( K  =  0  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  0 ) )
2725, 26eqeq12d 2180 . . . . . . 7  |-  ( K  =  0  ->  (
( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K )  <->  ( ( N  _C  0 )  +  ( N  _C  (
0  -  1 ) ) )  =  ( ( N  +  1 )  _C  0 ) ) )
2821, 27syl5ibrcom 156 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  =  0  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
29 simpr 109 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) ) )
30 0p1e1 8971 . . . . . . . . . 10  |-  ( 0  +  1 )  =  1
3130oveq1i 5852 . . . . . . . . 9  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  =  ( 1 ... ( N  +  1 ) )
3229, 31eleqtrdi 2259 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
33 nn0p1nn 9153 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
34 nnuz 9501 . . . . . . . . . . 11  |-  NN  =  ( ZZ>= `  1 )
3533, 34eleqtrdi 2259 . . . . . . . . . 10  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ( ZZ>= `  1 )
)
36 fzm1 10035 . . . . . . . . . . 11  |-  ( ( N  +  1 )  e.  ( ZZ>= `  1
)  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) ) )
3736biimpa 294 . . . . . . . . . 10  |-  ( ( ( N  +  1 )  e.  ( ZZ>= ` 
1 )  /\  K  e.  ( 1 ... ( N  +  1 ) ) )  ->  ( K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )
3835, 37sylan 281 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( K  e.  ( 1 ... (
( N  +  1 )  -  1 ) )  \/  K  =  ( N  +  1 ) ) )
39 nn0cn 9124 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  e.  CC )
40 ax-1cn 7846 . . . . . . . . . . . . . . 15  |-  1  e.  CC
41 pncan 8104 . . . . . . . . . . . . . . 15  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
4239, 40, 41sylancl 410 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  -  1 )  =  N )
4342oveq2d 5858 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( 1 ... ( ( N  +  1 )  - 
1 ) )  =  ( 1 ... N
) )
4443eleq2d 2236 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( K  e.  ( 1 ... ( ( N  + 
1 )  -  1 ) )  <->  K  e.  ( 1 ... N
) ) )
4544biimpa 294 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  K  e.  ( 1 ... N ) )
46 1eluzge0 9512 . . . . . . . . . . . . . . 15  |-  1  e.  ( ZZ>= `  0 )
47 fzss1 9998 . . . . . . . . . . . . . . 15  |-  ( 1  e.  ( ZZ>= `  0
)  ->  ( 1 ... N )  C_  ( 0 ... N
) )
4846, 47ax-mp 5 . . . . . . . . . . . . . 14  |-  ( 1 ... N )  C_  ( 0 ... N
)
4948sseli 3138 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 0 ... N
) )
50 bcp1n 10674 . . . . . . . . . . . . 13  |-  ( K  e.  ( 0 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
5149, 50syl 14 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  _C  K )  x.  ( ( N  + 
1 )  /  (
( N  +  1 )  -  K ) ) ) )
52 bcrpcl 10666 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 0 ... N )  ->  ( N  _C  K )  e.  RR+ )
5349, 52syl 14 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  RR+ )
5453rpcnd 9634 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  e.  CC )
55 elfzuz2 9964 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  ( ZZ>= `  1 )
)
5655, 34eleqtrrdi 2260 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  N  e.  NN )
5756peano2nnd 8872 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  NN )
5857nncnd 8871 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  CC )
5956nncnd 8871 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  N  e.  CC )
60 1cnd 7915 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  1  e.  CC )
61 elfzelz 9960 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ZZ )
6261zcnd 9314 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  CC )
6359, 60, 62addsubd 8230 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  =  ( ( N  -  K )  +  1 ) )
64 fznn0sub 9992 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  K )  e.  NN0 )
65 nn0p1nn 9153 . . . . . . . . . . . . . . . . . 18  |-  ( ( N  -  K )  e.  NN0  ->  ( ( N  -  K )  +  1 )  e.  NN )
6664, 65syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  K
)  +  1 )  e.  NN )
6763, 66eqeltrd 2243 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  NN )
6867nncnd 8871 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  CC )
6967nnap0d 8903 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K ) #  0 )
7054, 58, 68, 69div12apd 8723 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( N  +  1 )  x.  ( ( N  _C  K )  /  (
( N  +  1 )  -  K ) ) ) )
7167nnrpd 9630 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  K )  e.  RR+ )
7253, 71rpdivcld 9650 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  RR+ )
7372rpcnd 9634 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  e.  CC )
7458, 73mulcomd 7920 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  x.  ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7570, 74eqtrd 2198 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7658, 62npcand 8213 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  +  K )  =  ( N  + 
1 ) )
7776oveq2d 5858 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  ( N  +  1 ) ) )
7873, 68, 62adddid 7923 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( ( N  +  1 )  -  K )  +  K ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
7975, 77, 783eqtr2d 2204 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  x.  ( ( N  +  1 )  /  ( ( N  +  1 )  -  K ) ) )  =  ( ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  K
) ) )
8054, 68, 69divcanap1d 8687 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  ( ( N  +  1 )  -  K ) )  =  ( N  _C  K ) )
81 elfznn 9989 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  K  e.  NN )
8281nnap0d 8903 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  K #  0 )
8354, 68, 62, 69, 82divdivap2d 8719 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( ( ( N  _C  K )  x.  K )  / 
( ( N  + 
1 )  -  K
) ) )
84 bcm1k 10673 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( N  -  ( K  -  1 ) )  /  K ) ) )
8559, 62, 60subsub3d 8239 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( N  -  ( K  -  1 ) )  =  ( ( N  +  1 )  -  K ) )
8685oveq1d 5857 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( N  -  ( K  -  1 ) )  /  K )  =  ( ( ( N  +  1 )  -  K )  /  K ) )
8786oveq2d 5858 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  ( K  -  1 ) )  x.  ( ( N  -  ( K  -  1 ) )  /  K ) )  =  ( ( N  _C  ( K  - 
1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K
) ) )
8884, 87eqtrd 2198 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1
) )  x.  (
( ( N  + 
1 )  -  K
)  /  K ) ) )
89 fzelp1 10009 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  K  e.  ( 1 ... ( N  +  1 ) ) )
9057nnzd 9312 . . . . . . . . . . . . . . . . . . . . 21  |-  ( K  e.  ( 1 ... N )  ->  ( N  +  1 )  e.  ZZ )
91 elfzm1b 10033 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( K  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <->  ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) ) ) )
9261, 90, 91syl2anc 409 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  ( K  e.  ( 1 ... ( N  + 
1 ) )  <->  ( K  -  1 )  e.  ( 0 ... (
( N  +  1 )  -  1 ) ) ) )
9389, 92mpbid 146 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... ( ( N  + 
1 )  -  1 ) ) )
9459, 40, 41sylancl 410 . . . . . . . . . . . . . . . . . . . 20  |-  ( K  e.  ( 1 ... N )  ->  (
( N  +  1 )  -  1 )  =  N )
9594oveq2d 5858 . . . . . . . . . . . . . . . . . . 19  |-  ( K  e.  ( 1 ... N )  ->  (
0 ... ( ( N  +  1 )  - 
1 ) )  =  ( 0 ... N
) )
9693, 95eleqtrd 2245 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  ( K  -  1 )  e.  ( 0 ... N ) )
97 bcrpcl 10666 . . . . . . . . . . . . . . . . . 18  |-  ( ( K  -  1 )  e.  ( 0 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9896, 97syl 14 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  RR+ )
9998rpcnd 9634 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  ( N  _C  ( K  - 
1 ) )  e.  CC )
10081nnrpd 9630 . . . . . . . . . . . . . . . . . 18  |-  ( K  e.  ( 1 ... N )  ->  K  e.  RR+ )
10171, 100rpdivcld 9650 . . . . . . . . . . . . . . . . 17  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  RR+ )
102101rpcnd 9634 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K )  e.  CC )
10368, 62, 69, 82divap0d 8702 . . . . . . . . . . . . . . . 16  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  + 
1 )  -  K
)  /  K ) #  0 )
10454, 99, 102, 103divmulap3d 8721 . . . . . . . . . . . . . . 15  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( ( N  + 
1 )  -  K
)  /  K ) )  =  ( N  _C  ( K  - 
1 ) )  <->  ( N  _C  K )  =  ( ( N  _C  ( K  -  1 ) )  x.  ( ( ( N  +  1 )  -  K )  /  K ) ) ) )
10588, 104mpbird 166 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  /  ( ( ( N  +  1 )  -  K )  /  K ) )  =  ( N  _C  ( K  -  1
) ) )
10654, 62, 68, 69div23apd 8724 . . . . . . . . . . . . . 14  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  x.  K
)  /  ( ( N  +  1 )  -  K ) )  =  ( ( ( N  _C  K )  /  ( ( N  +  1 )  -  K ) )  x.  K ) )
10783, 105, 1063eqtr3rd 2207 . . . . . . . . . . . . 13  |-  ( K  e.  ( 1 ... N )  ->  (
( ( N  _C  K )  /  (
( N  +  1 )  -  K ) )  x.  K )  =  ( N  _C  ( K  -  1
) ) )
10880, 107oveq12d 5860 . . . . . . . . . . . 12  |-  ( K  e.  ( 1 ... N )  ->  (
( ( ( N  _C  K )  / 
( ( N  + 
1 )  -  K
) )  x.  (
( N  +  1 )  -  K ) )  +  ( ( ( N  _C  K
)  /  ( ( N  +  1 )  -  K ) )  x.  K ) )  =  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) ) )
10951, 79, 1083eqtrrd 2203 . . . . . . . . . . 11  |-  ( K  e.  ( 1 ... N )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
11045, 109syl 14 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( ( N  +  1 )  - 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
111 oveq2 5850 . . . . . . . . . . . . 13  |-  ( K  =  ( N  + 
1 )  ->  ( N  _C  K )  =  ( N  _C  ( N  +  1 ) ) )
11233nnzd 9312 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
113 nn0re 9123 . . . . . . . . . . . . . . . 16  |-  ( N  e.  NN0  ->  N  e.  RR )
114113ltp1d 8825 . . . . . . . . . . . . . . 15  |-  ( N  e.  NN0  ->  N  < 
( N  +  1 ) )
115114olcd 724 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  <  0  \/  N  <  ( N  +  1 ) ) )
116 bcval4 10665 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  ( N  +  1
)  e.  ZZ  /\  ( ( N  + 
1 )  <  0  \/  N  <  ( N  +  1 ) ) )  ->  ( N  _C  ( N  +  1 ) )  =  0 )
117112, 115, 116mpd3an23 1329 . . . . . . . . . . . . 13  |-  ( N  e.  NN0  ->  ( N  _C  ( N  + 
1 ) )  =  0 )
118111, 117sylan9eqr 2221 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  K )  =  0 )
119 oveq1 5849 . . . . . . . . . . . . . . 15  |-  ( K  =  ( N  + 
1 )  ->  ( K  -  1 )  =  ( ( N  +  1 )  - 
1 ) )
120119, 42sylan9eqr 2221 . . . . . . . . . . . . . 14  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( K  - 
1 )  =  N )
121120oveq2d 5858 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  ( N  _C  N ) )
122 bcnn 10670 . . . . . . . . . . . . . 14  |-  ( N  e.  NN0  ->  ( N  _C  N )  =  1 )
123122adantr 274 . . . . . . . . . . . . 13  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  N )  =  1 )
124121, 123eqtrd 2198 . . . . . . . . . . . 12  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( N  _C  ( K  -  1
) )  =  1 )
125118, 124oveq12d 5860 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( 0  +  1 ) )
126 oveq2 5850 . . . . . . . . . . . 12  |-  ( K  =  ( N  + 
1 )  ->  (
( N  +  1 )  _C  K )  =  ( ( N  +  1 )  _C  ( N  +  1 ) ) )
127 bcnn 10670 . . . . . . . . . . . . 13  |-  ( ( N  +  1 )  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
1281, 127syl 14 . . . . . . . . . . . 12  |-  ( N  e.  NN0  ->  ( ( N  +  1 )  _C  ( N  + 
1 ) )  =  1 )
129126, 128sylan9eqr 2221 . . . . . . . . . . 11  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  +  1 )  _C  K )  =  1 )
13030, 125, 1293eqtr4a 2225 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  =  ( N  +  1 ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
131110, 130jaodan 787 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  ( K  e.  (
1 ... ( ( N  +  1 )  - 
1 ) )  \/  K  =  ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13238, 131syldan 280 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ( 1 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
13332, 132syldan 280 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ( (
0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
134133ex 114 . . . . . 6  |-  ( N  e.  NN0  ->  ( K  e.  ( ( 0  +  1 ) ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
13528, 134jaod 707 . . . . 5  |-  ( N  e.  NN0  ->  ( ( K  =  0  \/  K  e.  ( ( 0  +  1 ) ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
1365, 135sylbid 149 . . . 4  |-  ( N  e.  NN0  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) ) )
137136imp 123 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
138137adantlr 469 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
139 00id 8039 . . 3  |-  ( 0  +  0 )  =  0
140 fzelp1 10009 . . . . . 6  |-  ( K  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
141140con3i 622 . . . . 5  |-  ( -.  K  e.  ( 0 ... ( N  + 
1 ) )  ->  -.  K  e.  (
0 ... N ) )
142 bcval3 10664 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... N ) )  ->  ( N  _C  K )  =  0 )
1431423expa 1193 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... N
) )  ->  ( N  _C  K )  =  0 )
144141, 143sylan2 284 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  K )  =  0 )
145 simpll 519 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  N  e.  NN0 )
146 simplr 520 . . . . . 6  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  K  e.  ZZ )
147 peano2zm 9229 . . . . . 6  |-  ( K  e.  ZZ  ->  ( K  -  1 )  e.  ZZ )
148146, 147syl 14 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( K  -  1 )  e.  ZZ )
14939adantr 274 . . . . . . . . . 10  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  N  e.  CC )
150149, 40, 41sylancl 410 . . . . . . . . 9  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  + 
1 )  -  1 )  =  N )
151150oveq2d 5858 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( 0 ... (
( N  +  1 )  -  1 ) )  =  ( 0 ... N ) )
152151eleq2d 2236 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... N ) ) )
153 id 19 . . . . . . . . 9  |-  ( K  e.  ZZ  ->  K  e.  ZZ )
1541nn0zd 9311 . . . . . . . . 9  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  ZZ )
155153, 154, 91syl2anr 288 . . . . . . . 8  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 1 ... ( N  +  1 ) )  <-> 
( K  -  1 )  e.  ( 0 ... ( ( N  +  1 )  - 
1 ) ) ) )
156 fzp1ss 10008 . . . . . . . . . . 11  |-  ( 0  e.  ZZ  ->  (
( 0  +  1 ) ... ( N  +  1 ) ) 
C_  ( 0 ... ( N  +  1 ) ) )
1578, 156ax-mp 5 . . . . . . . . . 10  |-  ( ( 0  +  1 ) ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
15831, 157eqsstrri 3175 . . . . . . . . 9  |-  ( 1 ... ( N  + 
1 ) )  C_  ( 0 ... ( N  +  1 ) )
159158sseli 3138 . . . . . . . 8  |-  ( K  e.  ( 1 ... ( N  +  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) )
160155, 159syl6bir 163 . . . . . . 7  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... ( ( N  +  1 )  -  1 ) )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
161152, 160sylbird 169 . . . . . 6  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( K  - 
1 )  e.  ( 0 ... N )  ->  K  e.  ( 0 ... ( N  +  1 ) ) ) )
162161con3dimp 625 . . . . 5  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  ( K  -  1
)  e.  ( 0 ... N ) )
163 bcval3 10664 . . . . 5  |-  ( ( N  e.  NN0  /\  ( K  -  1
)  e.  ZZ  /\  -.  ( K  -  1 )  e.  ( 0 ... N ) )  ->  ( N  _C  ( K  -  1
) )  =  0 )
164145, 148, 162, 163syl3anc 1228 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  _C  ( K  - 
1 ) )  =  0 )
165144, 164oveq12d 5860 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( 0  +  0 ) )
166145, 1syl 14 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  ( N  +  1 )  e.  NN0 )
167 simpr 109 . . . 4  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )
168 bcval3 10664 . . . 4  |-  ( ( ( N  +  1 )  e.  NN0  /\  K  e.  ZZ  /\  -.  K  e.  ( 0 ... ( N  + 
1 ) ) )  ->  ( ( N  +  1 )  _C  K )  =  0 )
169166, 146, 167, 168syl3anc 1228 . . 3  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  +  1 )  _C  K )  =  0 )
170139, 165, 1693eqtr4a 2225 . 2  |-  ( ( ( N  e.  NN0  /\  K  e.  ZZ )  /\  -.  K  e.  ( 0 ... ( N  +  1 ) ) )  ->  (
( N  _C  K
)  +  ( N  _C  ( K  - 
1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
171 simpr 109 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  K  e.  ZZ )
172 0zd 9203 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  0  e.  ZZ )
173112adantr 274 . . 3  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
174 fzdcel 9975 . . . 4  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> DECID  K  e.  ( 0 ... ( N  +  1 ) ) )
175 exmiddc 826 . . . 4  |-  (DECID  K  e.  ( 0 ... ( N  +  1 ) )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
176174, 175syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  0  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
177171, 172, 173, 176syl3anc 1228 . 2  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( K  e.  ( 0 ... ( N  +  1 ) )  \/  -.  K  e.  ( 0 ... ( N  +  1 ) ) ) )
178138, 170, 177mpjaodan 788 1  |-  ( ( N  e.  NN0  /\  K  e.  ZZ )  ->  ( ( N  _C  K )  +  ( N  _C  ( K  -  1 ) ) )  =  ( ( N  +  1 )  _C  K ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 698  DECID wdc 824    /\ w3a 968    = wceq 1343    e. wcel 2136    C_ wss 3116   class class class wbr 3982   ` cfv 5188  (class class class)co 5842   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758    < clt 7933    - cmin 8069    / cdiv 8568   NNcn 8857   NN0cn0 9114   ZZcz 9191   ZZ>=cuz 9466   RR+crp 9589   ...cfz 9944    _C cbc 10660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-q 9558  df-rp 9590  df-fz 9945  df-seqfrec 10381  df-fac 10639  df-bc 10661
This theorem is referenced by:  bccl  10680  bcn2m1  10682  bcn2p1  10683  binomlem  11424  bcxmas  11430  ex-bc  13610
  Copyright terms: Public domain W3C validator