ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i Unicode version

Theorem addid1i 8161
Description:  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addid1i  |-  ( A  +  0 )  =  A

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addrid 8157 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
31, 2ax-mp 5 1  |-  ( A  +  0 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1364    e. wcel 2164  (class class class)co 5918   CCcc 7870   0cc0 7872    + caddc 7875
This theorem was proved from axioms:  ax-mp 5  ax-0id 7980
This theorem is referenced by:  1p0e1  9098  9p1e10  9450  num0u  9458  numnncl2  9470  decrmanc  9504  decaddi  9507  decaddci  9508  decmul1  9511  decmulnc  9514  fsumrelem  11614  demoivreALT  11917  sinhalfpilem  14926  efipi  14936
  Copyright terms: Public domain W3C validator