ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i Unicode version

Theorem addid1i 7622
Description:  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addid1i  |-  ( A  +  0 )  =  A

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addid1 7618 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
31, 2ax-mp 7 1  |-  ( A  +  0 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1289    e. wcel 1438  (class class class)co 5652   CCcc 7346   0cc0 7348    + caddc 7351
This theorem was proved from axioms:  ax-mp 7  ax-0id 7451
This theorem is referenced by:  1p0e1  8536  9p1e10  8877  num0u  8885  numnncl2  8897  decrmanc  8931  decaddi  8934  decaddci  8935  decmul1  8938  decmulnc  8941  fsumrelem  10861  demoivreALT  11059
  Copyright terms: Public domain W3C validator