ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  addid1i Unicode version

Theorem addid1i 8017
Description:  0 is an additive identity. (Contributed by NM, 23-Nov-1994.) (Revised by Scott Fenton, 3-Jan-2013.)
Hypothesis
Ref Expression
mul.1  |-  A  e.  CC
Assertion
Ref Expression
addid1i  |-  ( A  +  0 )  =  A

Proof of Theorem addid1i
StepHypRef Expression
1 mul.1 . 2  |-  A  e.  CC
2 addid1 8013 . 2  |-  ( A  e.  CC  ->  ( A  +  0 )  =  A )
31, 2ax-mp 5 1  |-  ( A  +  0 )  =  A
Colors of variables: wff set class
Syntax hints:    = wceq 1335    e. wcel 2128  (class class class)co 5824   CCcc 7730   0cc0 7732    + caddc 7735
This theorem was proved from axioms:  ax-mp 5  ax-0id 7840
This theorem is referenced by:  1p0e1  8949  9p1e10  9297  num0u  9305  numnncl2  9317  decrmanc  9351  decaddi  9354  decaddci  9355  decmul1  9358  decmulnc  9361  fsumrelem  11368  demoivreALT  11670  sinhalfpilem  13123  efipi  13133
  Copyright terms: Public domain W3C validator