ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 Unicode version

Theorem 1p1e2 9035
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2  |-  ( 1  +  1 )  =  2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 8977 . 2  |-  2  =  ( 1  +  1 )
21eqcomi 2181 1  |-  ( 1  +  1 )  =  2
Colors of variables: wff set class
Syntax hints:    = wceq 1353  (class class class)co 5874   1c1 7811    + caddc 7813   2c2 8969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1447  ax-gen 1449  ax-ext 2159
This theorem depends on definitions:  df-bi 117  df-cleq 2170  df-2 8977
This theorem is referenced by:  2m1e1  9036  add1p1  9167  sub1m1  9168  nn0n0n1ge2  9322  3halfnz  9349  10p10e20  9477  5t4e20  9484  6t4e24  9488  7t3e21  9492  8t3e24  9498  9t3e27  9505  fz0to3un2pr  10122  fldiv4p1lem1div2  10304  m1modge3gt1  10370  fac2  10710  hash2  10791  nn0o1gt2  11909  3lcm2e6woprm  12085  logbleb  14349  logblt  14350  ex-exp  14449
  Copyright terms: Public domain W3C validator