ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  1p1e2 Unicode version

Theorem 1p1e2 9107
Description: 1 + 1 = 2. (Contributed by NM, 1-Apr-2008.)
Assertion
Ref Expression
1p1e2  |-  ( 1  +  1 )  =  2

Proof of Theorem 1p1e2
StepHypRef Expression
1 df-2 9049 . 2  |-  2  =  ( 1  +  1 )
21eqcomi 2200 1  |-  ( 1  +  1 )  =  2
Colors of variables: wff set class
Syntax hints:    = wceq 1364  (class class class)co 5922   1c1 7880    + caddc 7882   2c2 9041
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-gen 1463  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-cleq 2189  df-2 9049
This theorem is referenced by:  2m1e1  9108  add1p1  9241  sub1m1  9242  nn0n0n1ge2  9396  3halfnz  9423  10p10e20  9551  5t4e20  9558  6t4e24  9562  7t3e21  9566  8t3e24  9572  9t3e27  9579  fz0to3un2pr  10198  fldiv4p1lem1div2  10395  m1modge3gt1  10463  fac2  10823  hash2  10904  nn0o1gt2  12070  3lcm2e6woprm  12254  2exp8  12604  2exp11  12605  2exp16  12606  logbleb  15197  logblt  15198  1sgm2ppw  15231  ex-exp  15373
  Copyright terms: Public domain W3C validator