ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 Unicode version

Theorem fv0p1e1 9225
Description: Function value at  N  + 
1 with  N replaced by  0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 6008 . . 3  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 9224 . . 3  |-  ( 0  +  1 )  =  1
31, 2eqtrdi 2278 . 2  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
43fveq2d 5631 1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395   ` cfv 5318  (class class class)co 6001   0cc0 7999   1c1 8000    + caddc 8002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211  ax-1cn 8092  ax-icn 8094  ax-addcl 8095  ax-mulcl 8097  ax-addcom 8099  ax-i2m1 8104  ax-0id 8107
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-rex 2514  df-v 2801  df-un 3201  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-iota 5278  df-fv 5326  df-ov 6004
This theorem is referenced by:  mertenslem2  12047  fprodfac  12126
  Copyright terms: Public domain W3C validator