ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 Unicode version

Theorem fv0p1e1 9105
Description: Function value at  N  + 
1 with  N replaced by  0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5929 . . 3  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 9104 . . 3  |-  ( 0  +  1 )  =  1
31, 2eqtrdi 2245 . 2  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
43fveq2d 5562 1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ` cfv 5258  (class class class)co 5922   0cc0 7879   1c1 7880    + caddc 7882
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178  ax-1cn 7972  ax-icn 7974  ax-addcl 7975  ax-mulcl 7977  ax-addcom 7979  ax-i2m1 7984  ax-0id 7987
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-rex 2481  df-v 2765  df-un 3161  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-iota 5219  df-fv 5266  df-ov 5925
This theorem is referenced by:  mertenslem2  11701  fprodfac  11780
  Copyright terms: Public domain W3C validator