ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 Unicode version

Theorem fv0p1e1 8635
Description: Function value at  N  + 
1 with  N replaced by  0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5697 . . 3  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 8634 . . 3  |-  ( 0  +  1 )  =  1
31, 2syl6eq 2143 . 2  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
43fveq2d 5344 1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296   ` cfv 5049  (class class class)co 5690   0cc0 7447   1c1 7448    + caddc 7450
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-1cn 7535  ax-icn 7537  ax-addcl 7538  ax-mulcl 7540  ax-addcom 7542  ax-i2m1 7547  ax-0id 7550
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-iota 5014  df-fv 5057  df-ov 5693
This theorem is referenced by:  mertenslem2  11094
  Copyright terms: Public domain W3C validator