ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv0p1e1 Unicode version

Theorem fv0p1e1 9099
Description: Function value at  N  + 
1 with  N replaced by  0. Technical theorem to be used to reduce the size of a significant number of proofs. (Contributed by AV, 13-Aug-2022.)
Assertion
Ref Expression
fv0p1e1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )

Proof of Theorem fv0p1e1
StepHypRef Expression
1 oveq1 5926 . . 3  |-  ( N  =  0  ->  ( N  +  1 )  =  ( 0  +  1 ) )
2 0p1e1 9098 . . 3  |-  ( 0  +  1 )  =  1
31, 2eqtrdi 2242 . 2  |-  ( N  =  0  ->  ( N  +  1 )  =  1 )
43fveq2d 5559 1  |-  ( N  =  0  ->  ( F `  ( N  +  1 ) )  =  ( F ` 
1 ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   ` cfv 5255  (class class class)co 5919   0cc0 7874   1c1 7875    + caddc 7877
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-ext 2175  ax-1cn 7967  ax-icn 7969  ax-addcl 7970  ax-mulcl 7972  ax-addcom 7974  ax-i2m1 7979  ax-0id 7982
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-rex 2478  df-v 2762  df-un 3158  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-iota 5216  df-fv 5263  df-ov 5922
This theorem is referenced by:  mertenslem2  11682  fprodfac  11761
  Copyright terms: Public domain W3C validator