HomeHome Intuitionistic Logic Explorer
Theorem List (p. 91 of 113)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  ILE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Theorem List for Intuitionistic Logic Explorer - 9001-9100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdivfnzn 9001 Division restricted to  ZZ  X.  NN is a function. Given excluded middle, it would be easy to prove this for  CC 
X.  ( CC  \  { 0 } ). The key difference is that an element of  NN is apart from zero, whereas being an element of 
CC  \  { 0 } implies being not equal to zero. (Contributed by Jim Kingdon, 19-Mar-2020.)
 |-  (  /  |`  ( ZZ 
 X.  NN ) )  Fn  ( ZZ  X.  NN )
 
Theoremelq 9002* Membership in the set of rationals. (Contributed by NM, 8-Jan-2002.) (Revised by Mario Carneiro, 28-Jan-2014.)
 |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
 
Theoremqmulz 9003* If  A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
 |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
 
Theoremznq 9004 The ratio of an integer and a positive integer is a rational number. (Contributed by NM, 12-Jan-2002.)
 |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  /  B )  e.  QQ )
 
Theoremqre 9005 A rational number is a real number. (Contributed by NM, 14-Nov-2002.)
 |-  ( A  e.  QQ  ->  A  e.  RR )
 
Theoremzq 9006 An integer is a rational number. (Contributed by NM, 9-Jan-2002.)
 |-  ( A  e.  ZZ  ->  A  e.  QQ )
 
Theoremzssq 9007 The integers are a subset of the rationals. (Contributed by NM, 9-Jan-2002.)
 |- 
 ZZ  C_  QQ
 
Theoremnn0ssq 9008 The nonnegative integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN0  C_  QQ
 
Theoremnnssq 9009 The positive integers are a subset of the rationals. (Contributed by NM, 31-Jul-2004.)
 |- 
 NN  C_  QQ
 
Theoremqssre 9010 The rationals are a subset of the reals. (Contributed by NM, 9-Jan-2002.)
 |- 
 QQ  C_  RR
 
Theoremqsscn 9011 The rationals are a subset of the complex numbers. (Contributed by NM, 2-Aug-2004.)
 |- 
 QQ  C_  CC
 
Theoremqex 9012 The set of rational numbers exists. (Contributed by NM, 30-Jul-2004.) (Revised by Mario Carneiro, 17-Nov-2014.)
 |- 
 QQ  e.  _V
 
Theoremnnq 9013 A positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  A  e.  QQ )
 
Theoremqcn 9014 A rational number is a complex number. (Contributed by NM, 2-Aug-2004.)
 |-  ( A  e.  QQ  ->  A  e.  CC )
 
Theoremqaddcl 9015 Closure of addition of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  +  B )  e.  QQ )
 
Theoremqnegcl 9016 Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
 |-  ( A  e.  QQ  -> 
 -u A  e.  QQ )
 
Theoremqmulcl 9017 Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B )  e.  QQ )
 
Theoremqsubcl 9018 Closure of subtraction of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  -  B )  e.  QQ )
 
Theoremqapne 9019 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 20-Mar-2020.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A #  B  <->  A  =/=  B ) )
 
Theoremqltlen 9020 Rational 'Less than' expressed in terms of 'less than or equal to'. Also see ltleap 8007 which is a similar result for real numbers. (Contributed by Jim Kingdon, 11-Oct-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  <  B  <-> 
 ( A  <_  B  /\  B  =/=  A ) ) )
 
Theoremqlttri2 9021 Apartness is equivalent to not equal for rationals. (Contributed by Jim Kingdon, 9-Nov-2021.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  =/=  B  <-> 
 ( A  <  B  \/  B  <  A ) ) )
 
Theoremqreccl 9022 Closure of reciprocal of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  A  =/=  0
 )  ->  ( 1  /  A )  e.  QQ )
 
Theoremqdivcl 9023 Closure of division of rationals. (Contributed by NM, 3-Aug-2004.)
 |-  ( ( A  e.  QQ  /\  B  e.  QQ  /\  B  =/=  0 ) 
 ->  ( A  /  B )  e.  QQ )
 
Theoremqrevaddcl 9024 Reverse closure law for addition of rationals. (Contributed by NM, 2-Aug-2004.)
 |-  ( B  e.  QQ  ->  ( ( A  e.  CC  /\  ( A  +  B )  e.  QQ ) 
 <->  A  e.  QQ )
 )
 
Theoremnnrecq 9025 The reciprocal of a positive integer is rational. (Contributed by NM, 17-Nov-2004.)
 |-  ( A  e.  NN  ->  ( 1  /  A )  e.  QQ )
 
Theoremirradd 9026 The sum of an irrational number and a rational number is irrational. (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ )  ->  ( A  +  B )  e.  ( RR  \  QQ ) )
 
Theoremirrmul 9027 The product of a real which is not rational with a nonzero rational is not rational. Note that by "not rational" we mean the negation of "is rational" (whereas "irrational" is often defined to mean apart from any rational number - given excluded middle these two definitions would be equivalent). (Contributed by NM, 7-Nov-2008.)
 |-  ( ( A  e.  ( RR  \  QQ )  /\  B  e.  QQ  /\  B  =/=  0 )  ->  ( A  x.  B )  e.  ( RR  \  QQ ) )
 
3.4.13  Complex numbers as pairs of reals
 
Theoremcnref1o 9028* There is a natural one-to-one mapping from  ( RR  X.  RR ) to  CC, where we map  <. x ,  y
>. to  ( x  +  ( _i  x.  y ) ). In our construction of the complex numbers, this is in fact our definition of  CC (see df-c 7259), but in the axiomatic treatment we can only show that there is the expected mapping between these two sets. (Contributed by Mario Carneiro, 16-Jun-2013.) (Revised by Mario Carneiro, 17-Feb-2014.)
 |-  F  =  ( x  e.  RR ,  y  e.  RR  |->  ( x  +  ( _i  x.  y
 ) ) )   =>    |-  F : ( RR  X.  RR ) -1-1-onto-> CC
 
3.5  Order sets
 
3.5.1  Positive reals (as a subset of complex numbers)
 
Syntaxcrp 9029 Extend class notation to include the class of positive reals.
 class  RR+
 
Definitiondf-rp 9030 Define the set of positive reals. Definition of positive numbers in [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  RR+  =  { x  e. 
 RR  |  0  < 
 x }
 
Theoremelrp 9031 Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  <->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremelrpii 9032 Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.)
 |-  A  e.  RR   &    |-  0  <  A   =>    |-  A  e.  RR+
 
Theorem1rp 9033 1 is a positive real. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  1  e.  RR+
 
Theorem2rp 9034 2 is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  2  e.  RR+
 
Theoremrpre 9035 A positive real is a real. (Contributed by NM, 27-Oct-2007.)
 |-  ( A  e.  RR+  ->  A  e.  RR )
 
Theoremrpxr 9036 A positive real is an extended real. (Contributed by Mario Carneiro, 21-Aug-2015.)
 |-  ( A  e.  RR+  ->  A  e.  RR* )
 
Theoremrpcn 9037 A positive real is a complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  A  e.  CC )
 
Theoremnnrp 9038 A positive integer is a positive real. (Contributed by NM, 28-Nov-2008.)
 |-  ( A  e.  NN  ->  A  e.  RR+ )
 
Theoremrpssre 9039 The positive reals are a subset of the reals. (Contributed by NM, 24-Feb-2008.)
 |-  RR+  C_  RR
 
Theoremrpgt0 9040 A positive real is greater than zero. (Contributed by FL, 27-Dec-2007.)
 |-  ( A  e.  RR+  -> 
 0  <  A )
 
Theoremrpge0 9041 A positive real is greater than or equal to zero. (Contributed by NM, 22-Feb-2008.)
 |-  ( A  e.  RR+  -> 
 0  <_  A )
 
Theoremrpregt0 9042 A positive real is a positive real number. (Contributed by NM, 11-Nov-2008.) (Revised by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0 9043 A positive real is a nonnegative real number. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  0  <_  A )
 )
 
Theoremrpne0 9044 A positive real is nonzero. (Contributed by NM, 18-Jul-2008.)
 |-  ( A  e.  RR+  ->  A  =/=  0 )
 
Theoremrpap0 9045 A positive real is apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  A #  0 )
 
Theoremrprene0 9046 A positive real is a nonzero real number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpreap0 9047 A positive real is a real number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  RR  /\  A #  0 ) )
 
Theoremrpcnne0 9048 A positive real is a nonzero complex number. (Contributed by NM, 11-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpcnap0 9049 A positive real is a complex number apart from zero. (Contributed by Jim Kingdon, 22-Mar-2020.)
 |-  ( A  e.  RR+  ->  ( A  e.  CC  /\  A #  0 ) )
 
Theoremralrp 9050 Quantification over positive reals. (Contributed by NM, 12-Feb-2008.)
 |-  ( A. x  e.  RR+  ph  <->  A. x  e.  RR  ( 0  <  x  -> 
 ph ) )
 
Theoremrexrp 9051 Quantification over positive reals. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( E. x  e.  RR+  ph  <->  E. x  e.  RR  ( 0  <  x  /\  ph ) )
 
Theoremrpaddcl 9052 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcl 9053 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  x.  B )  e.  RR+ )
 
Theoremrpdivcl 9054 Closure law for division of positive reals. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR+ )
 
Theoremrpreccl 9055 Closure law for reciprocation of positive reals. (Contributed by Jeff Hankins, 23-Nov-2008.)
 |-  ( A  e.  RR+  ->  ( 1  /  A )  e.  RR+ )
 
Theoremrphalfcl 9056 Closure law for half of a positive real. (Contributed by Mario Carneiro, 31-Jan-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  e.  RR+ )
 
Theoremrpgecl 9057 A number greater or equal to a positive real is positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  ->  B  e.  RR+ )
 
Theoremrphalflt 9058 Half of a positive real is less than the original number. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( A  e.  RR+  ->  ( A  /  2
 )  <  A )
 
Theoremrerpdivcl 9059 Closure law for division of a real by a positive real. (Contributed by NM, 10-Nov-2008.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  /  B )  e.  RR )
 
Theoremge0p1rp 9060 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 5-Oct-2015.)
 |-  ( ( A  e.  RR  /\  0  <_  A )  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrpnegap 9061 Either a real apart from zero or its negation is a positive real, but not both. (Contributed by Jim Kingdon, 23-Mar-2020.)
 |-  ( ( A  e.  RR  /\  A #  0 ) 
 ->  ( A  e.  RR+  \/_  -u A  e.  RR+ )
 )
 
Theorem0nrp 9062 Zero is not a positive real. Axiom 9 of [Apostol] p. 20. (Contributed by NM, 27-Oct-2007.)
 |- 
 -.  0  e.  RR+
 
Theoremltsubrp 9063 Subtracting a positive real from another number decreases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( A  -  B )  <  A )
 
Theoremltaddrp 9064 Adding a positive number to another number increases it. (Contributed by FL, 27-Dec-2007.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  A  <  ( A  +  B )
 )
 
Theoremdifrp 9065 Two ways to say one number is less than another. (Contributed by Mario Carneiro, 21-May-2014.)
 |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <-> 
 ( B  -  A )  e.  RR+ ) )
 
Theoremelrpd 9066 Membership in the set of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0  <  A )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremnnrpd 9067 A positive integer is a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  NN )   =>    |-  ( ph  ->  A  e.  RR+ )
 
Theoremrpred 9068 A positive real is a real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR )
 
Theoremrpxrd 9069 A positive real is an extended real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  RR* )
 
Theoremrpcnd 9070 A positive real is a complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  e.  CC )
 
Theoremrpgt0d 9071 A positive real is greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <  A )
 
Theoremrpge0d 9072 A positive real is greater than or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  0  <_  A )
 
Theoremrpne0d 9073 A positive real is nonzero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A  =/=  0 )
 
Theoremrpap0d 9074 A positive real is apart from zero. (Contributed by Jim Kingdon, 28-Jul-2021.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  A #  0 )
 
Theoremrpregt0d 9075 A positive real is real and greater than zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <  A ) )
 
Theoremrprege0d 9076 A positive real is real and greater or equal to zero. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  0  <_  A ) )
 
Theoremrprene0d 9077 A positive real is a nonzero real number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  RR  /\  A  =/=  0 ) )
 
Theoremrpcnne0d 9078 A positive real is a nonzero complex number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  e.  CC  /\  A  =/=  0 ) )
 
Theoremrpreccld 9079 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR+ )
 
Theoremrprecred 9080 Closure law for reciprocation of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  /  A )  e.  RR )
 
Theoremrphalfcld 9081 Closure law for half of a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  2 )  e.  RR+ )
 
Theoremreclt1d 9082 The reciprocal of a positive number less than 1 is greater than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  1  <->  1  <  (
 1  /  A )
 ) )
 
Theoremrecgt1d 9083 The reciprocal of a positive number greater than 1 is less than 1. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   =>    |-  ( ph  ->  (
 1  <  A  <->  ( 1  /  A )  <  1 ) )
 
Theoremrpaddcld 9084 Closure law for addition of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  +  B )  e.  RR+ )
 
Theoremrpmulcld 9085 Closure law for multiplication of positive reals. Part of Axiom 7 of [Apostol] p. 20. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  x.  B )  e.  RR+ )
 
Theoremrpdivcld 9086 Closure law for division of positive reals. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  B )  e.  RR+ )
 
Theoremltrecd 9087 The reciprocal of both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( 1  /  B )  <  ( 1 
 /  A ) ) )
 
Theoremlerecd 9088 The reciprocal of both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( 1  /  B )  <_  ( 1 
 /  A ) ) )
 
Theoremltrec1d 9089 Reciprocal swap in a 'less than' relation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  ( 1  /  A )  <  B )   =>    |-  ( ph  ->  ( 1  /  B )  <  A )
 
Theoremlerec2d 9090 Reciprocal swap in a 'less than or equal to' relation. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  A 
 <_  ( 1  /  B ) )   =>    |-  ( ph  ->  B  <_  ( 1  /  A ) )
 
Theoremlediv2ad 9091 Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR )   &    |-  ( ph  ->  0  <_  C )   &    |-  ( ph  ->  A  <_  B )   =>    |-  ( ph  ->  ( C  /  B )  <_  ( C  /  A ) )
 
Theoremltdiv2d 9092 Division of a positive number by both sides of 'less than'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <  B  <->  ( C  /  B )  <  ( C 
 /  A ) ) )
 
Theoremlediv2d 9093 Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   =>    |-  ( ph  ->  ( A  <_  B  <->  ( C  /  B )  <_  ( C 
 /  A ) ) )
 
Theoremledivdivd 9094 Invert ratios of positive numbers and swap their ordering. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR+ )   &    |-  ( ph  ->  B  e.  RR+ )   &    |-  ( ph  ->  C  e.  RR+ )   &    |-  ( ph  ->  D  e.  RR+ )   &    |-  ( ph  ->  ( A  /  B ) 
 <_  ( C  /  D ) )   =>    |-  ( ph  ->  ( D  /  C )  <_  ( B  /  A ) )
 
Theoremdivge1 9095 The ratio of a number over a smaller positive number is larger than 1. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
 |-  ( ( A  e.  RR+  /\  B  e.  RR  /\  A  <_  B )  -> 
 1  <_  ( B  /  A ) )
 
Theoremdivlt1lt 9096 A real number divided by a positive real number is less than 1 iff the real number is less than the positive real number. (Contributed by AV, 25-May-2020.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  < 
 1 
 <->  A  <  B ) )
 
Theoremdivle1le 9097 A real number divided by a positive real number is less than or equal to 1 iff the real number is less than or equal to the positive real number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+ )  ->  ( ( A 
 /  B )  <_ 
 1 
 <->  A  <_  B )
 )
 
Theoremledivge1le 9098 If a number is less than or equal to another number, the number divided by a positive number greater than or equal to one is less than or equal to the other number. (Contributed by AV, 29-Jun-2021.)
 |-  ( ( A  e.  RR  /\  B  e.  RR+  /\  ( C  e.  RR+  /\  1  <_  C )
 )  ->  ( A  <_  B  ->  ( A  /  C )  <_  B ) )
 
Theoremge0p1rpd 9099 A nonnegative number plus one is a positive number. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  0 
 <_  A )   =>    |-  ( ph  ->  ( A  +  1 )  e.  RR+ )
 
Theoremrerpdivcld 9100 Closure law for division of a real by a positive real. (Contributed by Mario Carneiro, 28-May-2016.)
 |-  ( ph  ->  A  e.  RR )   &    |-  ( ph  ->  B  e.  RR+ )   =>    |-  ( ph  ->  ( A  /  B )  e. 
 RR )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11266
  Copyright terms: Public domain < Previous  Next >