ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  bernneq Unicode version

Theorem bernneq 10842
Description: Bernoulli's inequality, due to Johan Bernoulli (1667-1748). (Contributed by NM, 21-Feb-2005.)
Assertion
Ref Expression
bernneq  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )

Proof of Theorem bernneq
Dummy variables  j  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5975 . . . . . . . 8  |-  ( j  =  0  ->  ( A  x.  j )  =  ( A  x.  0 ) )
21oveq2d 5983 . . . . . . 7  |-  ( j  =  0  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  0 ) ) )
3 oveq2 5975 . . . . . . 7  |-  ( j  =  0  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
0 ) )
42, 3breq12d 4072 . . . . . 6  |-  ( j  =  0  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  0 ) )  <_ 
( ( 1  +  A ) ^ 0 ) ) )
54imbi2d 230 . . . . 5  |-  ( j  =  0  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) ) ) )
6 oveq2 5975 . . . . . . . 8  |-  ( j  =  k  ->  ( A  x.  j )  =  ( A  x.  k ) )
76oveq2d 5983 . . . . . . 7  |-  ( j  =  k  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  k
) ) )
8 oveq2 5975 . . . . . . 7  |-  ( j  =  k  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
k ) )
97, 8breq12d 4072 . . . . . 6  |-  ( j  =  k  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  k ) )  <_ 
( ( 1  +  A ) ^ k
) ) )
109imbi2d 230 . . . . 5  |-  ( j  =  k  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) ) ) )
11 oveq2 5975 . . . . . . . 8  |-  ( j  =  ( k  +  1 )  ->  ( A  x.  j )  =  ( A  x.  ( k  +  1 ) ) )
1211oveq2d 5983 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  (
k  +  1 ) ) ) )
13 oveq2 5975 . . . . . . 7  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^
( k  +  1 ) ) )
1412, 13breq12d 4072 . . . . . 6  |-  ( j  =  ( k  +  1 )  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  <_ 
( ( 1  +  A ) ^ (
k  +  1 ) ) ) )
1514imbi2d 230 . . . . 5  |-  ( j  =  ( k  +  1 )  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
16 oveq2 5975 . . . . . . . 8  |-  ( j  =  N  ->  ( A  x.  j )  =  ( A  x.  N ) )
1716oveq2d 5983 . . . . . . 7  |-  ( j  =  N  ->  (
1  +  ( A  x.  j ) )  =  ( 1  +  ( A  x.  N
) ) )
18 oveq2 5975 . . . . . . 7  |-  ( j  =  N  ->  (
( 1  +  A
) ^ j )  =  ( ( 1  +  A ) ^ N ) )
1917, 18breq12d 4072 . . . . . 6  |-  ( j  =  N  ->  (
( 1  +  ( A  x.  j ) )  <_  ( (
1  +  A ) ^ j )  <->  ( 1  +  ( A  x.  N ) )  <_ 
( ( 1  +  A ) ^ N
) ) )
2019imbi2d 230 . . . . 5  |-  ( j  =  N  ->  (
( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  j ) )  <_  ( ( 1  +  A ) ^
j ) )  <->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
21 recn 8093 . . . . . . 7  |-  ( A  e.  RR  ->  A  e.  CC )
22 mul01 8496 . . . . . . . . . 10  |-  ( A  e.  CC  ->  ( A  x.  0 )  =  0 )
2322oveq2d 5983 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  ( 1  +  0 ) )
24 1p0e1 9187 . . . . . . . . 9  |-  ( 1  +  0 )  =  1
2523, 24eqtrdi 2256 . . . . . . . 8  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  =  1 )
26 1le1 8680 . . . . . . . . 9  |-  1  <_  1
27 ax-1cn 8053 . . . . . . . . . . 11  |-  1  e.  CC
28 addcl 8085 . . . . . . . . . . 11  |-  ( ( 1  e.  CC  /\  A  e.  CC )  ->  ( 1  +  A
)  e.  CC )
2927, 28mpan 424 . . . . . . . . . 10  |-  ( A  e.  CC  ->  (
1  +  A )  e.  CC )
30 exp0 10725 . . . . . . . . . 10  |-  ( ( 1  +  A )  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3129, 30syl 14 . . . . . . . . 9  |-  ( A  e.  CC  ->  (
( 1  +  A
) ^ 0 )  =  1 )
3226, 31breqtrrid 4097 . . . . . . . 8  |-  ( A  e.  CC  ->  1  <_  ( ( 1  +  A ) ^ 0 ) )
3325, 32eqbrtrd 4081 . . . . . . 7  |-  ( A  e.  CC  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3421, 33syl 14 . . . . . 6  |-  ( A  e.  RR  ->  (
1  +  ( A  x.  0 ) )  <_  ( ( 1  +  A ) ^
0 ) )
3534adantr 276 . . . . 5  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  0 ) )  <_  ( (
1  +  A ) ^ 0 ) )
36 1re 8106 . . . . . . . . . . . . . 14  |-  1  e.  RR
37 nn0re 9339 . . . . . . . . . . . . . . 15  |-  ( k  e.  NN0  ->  k  e.  RR )
38 remulcl 8088 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( A  x.  k
)  e.  RR )
3937, 38sylan2 286 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( A  x.  k
)  e.  RR )
40 readdcl 8086 . . . . . . . . . . . . . 14  |-  ( ( 1  e.  RR  /\  ( A  x.  k
)  e.  RR )  ->  ( 1  +  ( A  x.  k
) )  e.  RR )
4136, 39, 40sylancr 414 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  k ) )  e.  RR )
42 simpl 109 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  RR )
43 readdcl 8086 . . . . . . . . . . . . 13  |-  ( ( ( 1  +  ( A  x.  k ) )  e.  RR  /\  A  e.  RR )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4441, 42, 43syl2anc 411 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  e.  RR )
4544adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  e.  RR )
46 readdcl 8086 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  RR  /\  A  e.  RR )  ->  ( 1  +  A
)  e.  RR )
4736, 46mpan 424 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  (
1  +  A )  e.  RR )
4847adantr 276 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  A
)  e.  RR )
4941, 48remulcld 8138 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  e.  RR )
5049adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  e.  RR )
51 reexpcl 10738 . . . . . . . . . . . . . 14  |-  ( ( ( 1  +  A
)  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5247, 51sylan 283 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ k
)  e.  RR )
5352, 48remulcld 8138 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  A ) ^
k )  x.  (
1  +  A ) )  e.  RR )
5453adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( ( 1  +  A ) ^ k
)  x.  ( 1  +  A ) )  e.  RR )
55 remulcl 8088 . . . . . . . . . . . . . . . . . 18  |-  ( ( A  e.  RR  /\  A  e.  RR )  ->  ( A  x.  A
)  e.  RR )
5655anidms 397 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  ( A  x.  A )  e.  RR )
57 msqge0 8724 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  RR  ->  0  <_  ( A  x.  A
) )
5856, 57jca 306 . . . . . . . . . . . . . . . 16  |-  ( A  e.  RR  ->  (
( A  x.  A
)  e.  RR  /\  0  <_  ( A  x.  A ) ) )
59 nn0ge0 9355 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  0  <_ 
k )
6037, 59jca 306 . . . . . . . . . . . . . . . 16  |-  ( k  e.  NN0  ->  ( k  e.  RR  /\  0  <_  k ) )
61 mulge0 8727 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( A  x.  A )  e.  RR  /\  0  <_  ( A  x.  A ) )  /\  ( k  e.  RR  /\  0  <_  k )
)  ->  0  <_  ( ( A  x.  A
)  x.  k ) )
6258, 60, 61syl2an 289 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  A )  x.  k ) )
6321adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  ->  A  e.  CC )
64 nn0cn 9340 . . . . . . . . . . . . . . . . 17  |-  ( k  e.  NN0  ->  k  e.  CC )
6564adantl 277 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
k  e.  CC )
6663, 63, 65mul32d 8260 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  A )  x.  k
)  =  ( ( A  x.  k )  x.  A ) )
6762, 66breqtrd 4085 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
0  <_  ( ( A  x.  k )  x.  A ) )
68 simpl 109 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  A  e.  RR )
6938, 68remulcld 8138 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  RR  /\  k  e.  RR )  ->  ( ( A  x.  k )  x.  A
)  e.  RR )
7037, 69sylan2 286 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( A  x.  k )  x.  A
)  e.  RR )
7144, 70addge01d 8641 . . . . . . . . . . . . . 14  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 0  <_  (
( A  x.  k
)  x.  A )  <-> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) ) )
7267, 71mpbid 147 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k )  x.  A ) ) )
73 mulcl 8087 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  k
)  e.  CC )
74 addcl 8085 . . . . . . . . . . . . . . . . 17  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC )  ->  ( 1  +  ( A  x.  k
) )  e.  CC )
7527, 73, 74sylancr 414 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  k ) )  e.  CC )
76 simpl 109 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  A  e.  CC )
7773, 76mulcld 8128 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  x.  A
)  e.  CC )
7875, 76, 77addassd 8130 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
79 muladd11 8240 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8073, 76, 79syl2anc 411 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  x.  (
1  +  A ) )  =  ( ( 1  +  ( A  x.  k ) )  +  ( A  +  ( ( A  x.  k )  x.  A
) ) ) )
8178, 80eqtr4d 2243 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8221, 64, 81syl2an 289 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( ( 1  +  ( A  x.  k ) )  +  A )  +  ( ( A  x.  k
)  x.  A ) )  =  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8372, 82breqtrd 4085 . . . . . . . . . . . 12  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  ( A  x.  k
) )  +  A
)  <_  ( (
1  +  ( A  x.  k ) )  x.  ( 1  +  A ) ) )
8483adantr 276 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( 1  +  ( A  x.  k ) )  x.  ( 1  +  A
) ) )
8541adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  e.  RR )
8652adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ k )  e.  RR )
8748adantr 276 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  A )  e.  RR )
88 neg1rr 9177 . . . . . . . . . . . . . . . 16  |-  -u 1  e.  RR
89 leadd2 8539 . . . . . . . . . . . . . . . 16  |-  ( (
-u 1  e.  RR  /\  A  e.  RR  /\  1  e.  RR )  ->  ( -u 1  <_  A 
<->  ( 1  +  -u
1 )  <_  (
1  +  A ) ) )
9088, 36, 89mp3an13 1341 . . . . . . . . . . . . . . 15  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  ( 1  +  -u 1 )  <_ 
( 1  +  A
) ) )
91 1pneg1e0 9182 . . . . . . . . . . . . . . . 16  |-  ( 1  +  -u 1 )  =  0
9291breq1i 4066 . . . . . . . . . . . . . . 15  |-  ( ( 1  +  -u 1
)  <_  ( 1  +  A )  <->  0  <_  ( 1  +  A ) )
9390, 92bitrdi 196 . . . . . . . . . . . . . 14  |-  ( A  e.  RR  ->  ( -u 1  <_  A  <->  0  <_  ( 1  +  A ) ) )
9493biimpa 296 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  0  <_  ( 1  +  A ) )
9594ad2ant2r 509 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  0  <_  ( 1  +  A
) )
96 simprr 531 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  k ) )  <_  ( ( 1  +  A ) ^
k ) )
9785, 86, 87, 95, 96lemul1ad 9047 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  x.  ( 1  +  A ) )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
9845, 50, 54, 84, 97letrd 8231 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  ( A  x.  k ) )  +  A )  <_  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
99 adddi 8092 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC  /\  1  e.  CC )  ->  ( A  x.  ( k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
10027, 99mp3an3 1339 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  ( A  x.  1 ) ) )
101 mulrid 8104 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  CC  ->  ( A  x.  1 )  =  A )
102101adantr 276 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  1 )  =  A )
103102oveq2d 5983 . . . . . . . . . . . . . . 15  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( A  x.  k )  +  ( A  x.  1 ) )  =  ( ( A  x.  k )  +  A ) )
104100, 103eqtrd 2240 . . . . . . . . . . . . . 14  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( A  x.  (
k  +  1 ) )  =  ( ( A  x.  k )  +  A ) )
105104oveq2d 5983 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
106 addass 8090 . . . . . . . . . . . . . . 15  |-  ( ( 1  e.  CC  /\  ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10727, 106mp3an1 1337 . . . . . . . . . . . . . 14  |-  ( ( ( A  x.  k
)  e.  CC  /\  A  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
10873, 76, 107syl2anc 411 . . . . . . . . . . . . 13  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( ( 1  +  ( A  x.  k
) )  +  A
)  =  ( 1  +  ( ( A  x.  k )  +  A ) ) )
109105, 108eqtr4d 2243 . . . . . . . . . . . 12  |-  ( ( A  e.  CC  /\  k  e.  CC )  ->  ( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11021, 64, 109syl2an 289 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
111110adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  =  ( ( 1  +  ( A  x.  k ) )  +  A ) )
11227, 21, 28sylancr 414 . . . . . . . . . . . 12  |-  ( A  e.  RR  ->  (
1  +  A )  e.  CC )
113 expp1 10728 . . . . . . . . . . . 12  |-  ( ( ( 1  +  A
)  e.  CC  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
114112, 113sylan 283 . . . . . . . . . . 11  |-  ( ( A  e.  RR  /\  k  e.  NN0 )  -> 
( ( 1  +  A ) ^ (
k  +  1 ) )  =  ( ( ( 1  +  A
) ^ k )  x.  ( 1  +  A ) ) )
115114adantr 276 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
( 1  +  A
) ^ ( k  +  1 ) )  =  ( ( ( 1  +  A ) ^ k )  x.  ( 1  +  A
) ) )
11698, 111, 1153brtr4d 4091 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  k  e.  NN0 )  /\  ( -u 1  <_  A  /\  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) ) )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) )
117116exp43 372 . . . . . . . 8  |-  ( A  e.  RR  ->  (
k  e.  NN0  ->  (
-u 1  <_  A  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) ) )
118117com12 30 . . . . . . 7  |-  ( k  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( ( 1  +  ( A  x.  k ) )  <_  ( (
1  +  A ) ^ k )  -> 
( 1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( (
1  +  A ) ^ ( k  +  1 ) ) ) ) ) )
119118impd 254 . . . . . 6  |-  ( k  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k )  ->  ( 1  +  ( A  x.  (
k  +  1 ) ) )  <_  (
( 1  +  A
) ^ ( k  +  1 ) ) ) ) )
120119a2d 26 . . . . 5  |-  ( k  e.  NN0  ->  ( ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  k
) )  <_  (
( 1  +  A
) ^ k ) )  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  ( k  +  1 ) ) )  <_  ( ( 1  +  A ) ^
( k  +  1 ) ) ) ) )
1215, 10, 15, 20, 35, 120nn0ind 9522 . . . 4  |-  ( N  e.  NN0  ->  ( ( A  e.  RR  /\  -u 1  <_  A )  ->  ( 1  +  ( A  x.  N ) )  <_  ( (
1  +  A ) ^ N ) ) )
122121expd 258 . . 3  |-  ( N  e.  NN0  ->  ( A  e.  RR  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
123122com12 30 . 2  |-  ( A  e.  RR  ->  ( N  e.  NN0  ->  ( -u 1  <_  A  ->  ( 1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) ) ) )
1241233imp 1196 1  |-  ( ( A  e.  RR  /\  N  e.  NN0  /\  -u 1  <_  A )  ->  (
1  +  ( A  x.  N ) )  <_  ( ( 1  +  A ) ^ N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   class class class wbr 4059  (class class class)co 5967   CCcc 7958   RRcr 7959   0cc0 7960   1c1 7961    + caddc 7963    x. cmul 7965    <_ cle 8143   -ucneg 8279   NN0cn0 9330   ^cexp 10720
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684  df-seqfrec 10630  df-exp 10721
This theorem is referenced by:  bernneq2  10843
  Copyright terms: Public domain W3C validator