ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3imp1 Unicode version

Theorem 3imp1 1210
Description: Importation to left triple conjunction. (Contributed by NM, 24-Feb-2005.)
Hypothesis
Ref Expression
3imp1.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
3imp1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )

Proof of Theorem 3imp1
StepHypRef Expression
1 3imp1.1 . . 3  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
213imp 1183 . 2  |-  ( (
ph  /\  ps  /\  ch )  ->  ( th  ->  ta ) )
32imp 123 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  reupick2  3408  ledivge1le  9662  leexp1a  10510
  Copyright terms: Public domain W3C validator