ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  com34 Unicode version

Theorem com34 83
Description: Commutation of antecedents. Swap 3rd and 4th. (Contributed by NM, 25-Apr-1994.)
Hypothesis
Ref Expression
com4.1  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
Assertion
Ref Expression
com34  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ch  ->  ta ) ) ) )

Proof of Theorem com34
StepHypRef Expression
1 com4.1 . 2  |-  ( ph  ->  ( ps  ->  ( ch  ->  ( th  ->  ta ) ) ) )
2 pm2.04 82 . 2  |-  ( ( ch  ->  ( th  ->  ta ) )  -> 
( th  ->  ( ch  ->  ta ) ) )
31, 2syl6 33 1  |-  ( ph  ->  ( ps  ->  ( th  ->  ( ch  ->  ta ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7
This theorem is referenced by:  com4l  84  com35  90  3an1rs  1219  rspct  2836  po2nr  4311  funssres  5260  f1ocnv2d  6077  tfrlem9  6322  nnmass  6490  nnmordi  6519  genpcdl  7520  genpcuu  7521  mulnqprl  7569  mulnqpru  7570  distrlem1prl  7583  distrlem1pru  7584  divgt0  8831  divge0  8832  uzind2  9367  facdiv  10720  dvdsabseq  11855  divgcdcoprm0  12103  lmodvsdi  13406
  Copyright terms: Public domain W3C validator