| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 3ancoma | Unicode version | ||
| Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) | 
| Ref | Expression | 
|---|---|
| 3ancoma | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ancom 266 | 
. . 3
 | |
| 2 | 1 | anbi1i 458 | 
. 2
 | 
| 3 | df-3an 982 | 
. 2
 | |
| 4 | df-3an 982 | 
. 2
 | |
| 5 | 2, 3, 4 | 3bitr4i 212 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: 3ancomb 988 3anrev 990 3anan12 992 3com12 1209 elfzmlbp 10207 elfzo2 10225 pythagtriplem2 12435 pythagtrip 12452 xpsfrnel 12987 | 
| Copyright terms: Public domain | W3C validator |