Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ancoma | Unicode version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3ancoma |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 264 | . . 3 | |
2 | 1 | anbi1i 454 | . 2 |
3 | df-3an 970 | . 2 | |
4 | df-3an 970 | . 2 | |
5 | 2, 3, 4 | 3bitr4i 211 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: 3ancomb 976 3anrev 978 3anan12 980 3com12 1197 elfzmlbp 10063 elfzo2 10081 pythagtriplem2 12194 pythagtrip 12211 |
Copyright terms: Public domain | W3C validator |