Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3ancoma | Unicode version |
Description: Commutation law for triple conjunction. (Contributed by NM, 21-Apr-1994.) |
Ref | Expression |
---|---|
3ancoma |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 266 | . . 3 | |
2 | 1 | anbi1i 458 | . 2 |
3 | df-3an 980 | . 2 | |
4 | df-3an 980 | . 2 | |
5 | 2, 3, 4 | 3bitr4i 213 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3ancomb 986 3anrev 988 3anan12 990 3com12 1207 elfzmlbp 10100 elfzo2 10118 pythagtriplem2 12232 pythagtrip 12249 |
Copyright terms: Public domain | W3C validator |