ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fncnv Unicode version

Theorem fncnv 5340
Description: Single-rootedness (see funcnv 5335) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.)
Assertion
Ref Expression
fncnv  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Distinct variable groups:    x, y, A   
x, B, y    x, R, y

Proof of Theorem fncnv
StepHypRef Expression
1 df-fn 5274 . 2  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
2 df-rn 4686 . . . 4  |-  ran  ( R  i^i  ( A  X.  B ) )  =  dom  `' ( R  i^i  ( A  X.  B ) )
32eqeq1i 2213 . . 3  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  dom  `' ( R  i^i  ( A  X.  B ) )  =  B )
43anbi2i 457 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  dom  `' ( R  i^i  ( A  X.  B ) )  =  B ) )
5 rninxp 5126 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  <->  A. y  e.  B  E. x  e.  A  x R
y )
65anbi1i 458 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R
y  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
7 funcnv 5335 . . . . . 6  |-  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  ran  ( R  i^i  ( A  X.  B
) ) E* x  x ( R  i^i  ( A  X.  B
) ) y )
8 raleq 2702 . . . . . . 7  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B ) ) y ) )
9 moanimv 2129 . . . . . . . . . 10  |-  ( E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) )  <-> 
( y  e.  B  ->  E* x ( x  e.  A  /\  x R y ) ) )
10 brinxp2 4742 . . . . . . . . . . . 12  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( x  e.  A  /\  y  e.  B  /\  x R y ) )
11 3anan12 993 . . . . . . . . . . . 12  |-  ( ( x  e.  A  /\  y  e.  B  /\  x R y )  <->  ( y  e.  B  /\  (
x  e.  A  /\  x R y ) ) )
1210, 11bitri 184 . . . . . . . . . . 11  |-  ( x ( R  i^i  ( A  X.  B ) ) y  <->  ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
1312mobii 2091 . . . . . . . . . 10  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x ( y  e.  B  /\  ( x  e.  A  /\  x R y ) ) )
14 df-rmo 2492 . . . . . . . . . . 11  |-  ( E* x  e.  A  x R y  <->  E* x
( x  e.  A  /\  x R y ) )
1514imbi2i 226 . . . . . . . . . 10  |-  ( ( y  e.  B  ->  E* x  e.  A  x R y )  <->  ( y  e.  B  ->  E* x
( x  e.  A  /\  x R y ) ) )
169, 13, 153bitr4i 212 . . . . . . . . 9  |-  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <-> 
( y  e.  B  ->  E* x  e.  A  x R y ) )
17 biimt 241 . . . . . . . . 9  |-  ( y  e.  B  ->  ( E* x  e.  A  x R y  <->  ( y  e.  B  ->  E* x  e.  A  x R
y ) ) )
1816, 17bitr4id 199 . . . . . . . 8  |-  ( y  e.  B  ->  ( E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  E* x  e.  A  x R y ) )
1918ralbiia 2520 . . . . . . 7  |-  ( A. y  e.  B  E* x  x ( R  i^i  ( A  X.  B
) ) y  <->  A. y  e.  B  E* x  e.  A  x R
y )
208, 19bitrdi 196 . . . . . 6  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( A. y  e.  ran  ( R  i^i  ( A  X.  B ) ) E* x  x ( R  i^i  ( A  X.  B ) ) y  <->  A. y  e.  B  E* x  e.  A  x R y ) )
217, 20bitrid 192 . . . . 5  |-  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  ->  ( Fun  `' ( R  i^i  ( A  X.  B
) )  <->  A. y  e.  B  E* x  e.  A  x R
y ) )
2221pm5.32i 454 . . . 4  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  A. y  e.  B  E* x  e.  A  x R
y ) )
23 r19.26 2632 . . . 4  |-  ( A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y )  <->  ( A. y  e.  B  E. x  e.  A  x R y  /\  A. y  e.  B  E* x  e.  A  x R y ) )
246, 22, 233bitr4i 212 . . 3  |-  ( ( ran  ( R  i^i  ( A  X.  B
) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) )  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
25 ancom 266 . . 3  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  ( ran  ( R  i^i  ( A  X.  B ) )  =  B  /\  Fun  `' ( R  i^i  ( A  X.  B ) ) ) )
26 reu5 2723 . . . 4  |-  ( E! x  e.  A  x R y  <->  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2726ralbii 2512 . . 3  |-  ( A. y  e.  B  E! x  e.  A  x R y  <->  A. y  e.  B  ( E. x  e.  A  x R y  /\  E* x  e.  A  x R y ) )
2824, 25, 273bitr4i 212 . 2  |-  ( ( Fun  `' ( R  i^i  ( A  X.  B ) )  /\  ran  ( R  i^i  ( A  X.  B ) )  =  B )  <->  A. y  e.  B  E! x  e.  A  x R
y )
291, 4, 283bitr2i 208 1  |-  ( `' ( R  i^i  ( A  X.  B ) )  Fn  B  <->  A. y  e.  B  E! x  e.  A  x R
y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373   E*wmo 2055    e. wcel 2176   A.wral 2484   E.wrex 2485   E!wreu 2486   E*wrmo 2487    i^i cin 3165   class class class wbr 4044    X. cxp 4673   `'ccnv 4674   dom cdm 4675   ran crn 4676   Fun wfun 5265    Fn wfn 5266
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-v 2774  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-fun 5273  df-fn 5274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator