Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fncnv | Unicode version |
Description: Single-rootedness (see funcnv 5249) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.) |
Ref | Expression |
---|---|
fncnv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fn 5191 | . 2 | |
2 | df-rn 4615 | . . . 4 | |
3 | 2 | eqeq1i 2173 | . . 3 |
4 | 3 | anbi2i 453 | . 2 |
5 | rninxp 5047 | . . . . 5 | |
6 | 5 | anbi1i 454 | . . . 4 |
7 | funcnv 5249 | . . . . . 6 | |
8 | raleq 2661 | . . . . . . 7 | |
9 | moanimv 2089 | . . . . . . . . . 10 | |
10 | brinxp2 4671 | . . . . . . . . . . . 12 | |
11 | 3anan12 980 | . . . . . . . . . . . 12 | |
12 | 10, 11 | bitri 183 | . . . . . . . . . . 11 |
13 | 12 | mobii 2051 | . . . . . . . . . 10 |
14 | df-rmo 2452 | . . . . . . . . . . 11 | |
15 | 14 | imbi2i 225 | . . . . . . . . . 10 |
16 | 9, 13, 15 | 3bitr4i 211 | . . . . . . . . 9 |
17 | biimt 240 | . . . . . . . . 9 | |
18 | 16, 17 | bitr4id 198 | . . . . . . . 8 |
19 | 18 | ralbiia 2480 | . . . . . . 7 |
20 | 8, 19 | bitrdi 195 | . . . . . 6 |
21 | 7, 20 | syl5bb 191 | . . . . 5 |
22 | 21 | pm5.32i 450 | . . . 4 |
23 | r19.26 2592 | . . . 4 | |
24 | 6, 22, 23 | 3bitr4i 211 | . . 3 |
25 | ancom 264 | . . 3 | |
26 | reu5 2678 | . . . 4 | |
27 | 26 | ralbii 2472 | . . 3 |
28 | 24, 25, 27 | 3bitr4i 211 | . 2 |
29 | 1, 4, 28 | 3bitr2i 207 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 968 wceq 1343 wmo 2015 wcel 2136 wral 2444 wrex 2445 wreu 2446 wrmo 2447 cin 3115 class class class wbr 3982 cxp 4602 ccnv 4603 cdm 4604 crn 4605 wfun 5182 wfn 5183 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-reu 2451 df-rmo 2452 df-v 2728 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |