| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fncnv | Unicode version | ||
| Description: Single-rootedness (see funcnv 5382) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| fncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5321 |
. 2
| |
| 2 | df-rn 4730 |
. . . 4
| |
| 3 | 2 | eqeq1i 2237 |
. . 3
|
| 4 | 3 | anbi2i 457 |
. 2
|
| 5 | rninxp 5172 |
. . . . 5
| |
| 6 | 5 | anbi1i 458 |
. . . 4
|
| 7 | funcnv 5382 |
. . . . . 6
| |
| 8 | raleq 2728 |
. . . . . . 7
| |
| 9 | moanimv 2153 |
. . . . . . . . . 10
| |
| 10 | brinxp2 4786 |
. . . . . . . . . . . 12
| |
| 11 | 3anan12 1014 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | bitri 184 |
. . . . . . . . . . 11
|
| 13 | 12 | mobii 2114 |
. . . . . . . . . 10
|
| 14 | df-rmo 2516 |
. . . . . . . . . . 11
| |
| 15 | 14 | imbi2i 226 |
. . . . . . . . . 10
|
| 16 | 9, 13, 15 | 3bitr4i 212 |
. . . . . . . . 9
|
| 17 | biimt 241 |
. . . . . . . . 9
| |
| 18 | 16, 17 | bitr4id 199 |
. . . . . . . 8
|
| 19 | 18 | ralbiia 2544 |
. . . . . . 7
|
| 20 | 8, 19 | bitrdi 196 |
. . . . . 6
|
| 21 | 7, 20 | bitrid 192 |
. . . . 5
|
| 22 | 21 | pm5.32i 454 |
. . . 4
|
| 23 | r19.26 2657 |
. . . 4
| |
| 24 | 6, 22, 23 | 3bitr4i 212 |
. . 3
|
| 25 | ancom 266 |
. . 3
| |
| 26 | reu5 2749 |
. . . 4
| |
| 27 | 26 | ralbii 2536 |
. . 3
|
| 28 | 24, 25, 27 | 3bitr4i 212 |
. 2
|
| 29 | 1, 4, 28 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-fun 5320 df-fn 5321 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |