| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fncnv | Unicode version | ||
| Description: Single-rootedness (see funcnv 5320) of a class cut down by a cross product. (Contributed by NM, 5-Mar-2007.) |
| Ref | Expression |
|---|---|
| fncnv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fn 5262 |
. 2
| |
| 2 | df-rn 4675 |
. . . 4
| |
| 3 | 2 | eqeq1i 2204 |
. . 3
|
| 4 | 3 | anbi2i 457 |
. 2
|
| 5 | rninxp 5114 |
. . . . 5
| |
| 6 | 5 | anbi1i 458 |
. . . 4
|
| 7 | funcnv 5320 |
. . . . . 6
| |
| 8 | raleq 2693 |
. . . . . . 7
| |
| 9 | moanimv 2120 |
. . . . . . . . . 10
| |
| 10 | brinxp2 4731 |
. . . . . . . . . . . 12
| |
| 11 | 3anan12 992 |
. . . . . . . . . . . 12
| |
| 12 | 10, 11 | bitri 184 |
. . . . . . . . . . 11
|
| 13 | 12 | mobii 2082 |
. . . . . . . . . 10
|
| 14 | df-rmo 2483 |
. . . . . . . . . . 11
| |
| 15 | 14 | imbi2i 226 |
. . . . . . . . . 10
|
| 16 | 9, 13, 15 | 3bitr4i 212 |
. . . . . . . . 9
|
| 17 | biimt 241 |
. . . . . . . . 9
| |
| 18 | 16, 17 | bitr4id 199 |
. . . . . . . 8
|
| 19 | 18 | ralbiia 2511 |
. . . . . . 7
|
| 20 | 8, 19 | bitrdi 196 |
. . . . . 6
|
| 21 | 7, 20 | bitrid 192 |
. . . . 5
|
| 22 | 21 | pm5.32i 454 |
. . . 4
|
| 23 | r19.26 2623 |
. . . 4
| |
| 24 | 6, 22, 23 | 3bitr4i 212 |
. . 3
|
| 25 | ancom 266 |
. . 3
| |
| 26 | reu5 2714 |
. . . 4
| |
| 27 | 26 | ralbii 2503 |
. . 3
|
| 28 | 24, 25, 27 | 3bitr4i 212 |
. 2
|
| 29 | 1, 4, 28 | 3bitr2i 208 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-rmo 2483 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |