ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o2 Unicode version

Theorem dff1o2 5509
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 5265 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 df-f1 5263 . . . 4  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
3 df-fo 5264 . . . 4  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
42, 3anbi12i 460 . . 3  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( ( F : A --> B  /\  Fun  `' F )  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
5 anass 401 . . . 4  |-  ( ( ( F : A --> B  /\  Fun  `' F
)  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) ) )
6 3anan12 992 . . . . . 6  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
76anbi1i 458 . . . . 5  |-  ( ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  /\  F : A --> B )  <->  ( ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  F : A
--> B ) )
8 eqimss 3237 . . . . . . . 8  |-  ( ran 
F  =  B  ->  ran  F  C_  B )
9 df-f 5262 . . . . . . . . 9  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
109biimpri 133 . . . . . . . 8  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  F : A --> B )
118, 10sylan2 286 . . . . . . 7  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A --> B )
12113adant2 1018 . . . . . 6  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  ->  F : A --> B )
1312pm4.71i 391 . . . . 5  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  /\  F : A --> B ) )
14 ancom 266 . . . . 5  |-  ( ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )  <->  ( ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  F : A
--> B ) )
157, 13, 143bitr4ri 213 . . . 4  |-  ( ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
165, 15bitri 184 . . 3  |-  ( ( ( F : A --> B  /\  Fun  `' F
)  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
174, 16bitri 184 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
181, 17bitri 184 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    C_ wss 3157   `'ccnv 4662   ran crn 4664   Fun wfun 5252    Fn wfn 5253   -->wf 5254   -1-1->wf1 5255   -onto->wfo 5256   -1-1-onto->wf1o 5257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265
This theorem is referenced by:  dff1o3  5510  dff1o4  5512  f1orn  5514  dif1en  6940  fiintim  6992
  Copyright terms: Public domain W3C validator