| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dff1o2 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) | 
| Ref | Expression | 
|---|---|
| dff1o2 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-f1o 5265 | 
. 2
 | |
| 2 | df-f1 5263 | 
. . . 4
 | |
| 3 | df-fo 5264 | 
. . . 4
 | |
| 4 | 2, 3 | anbi12i 460 | 
. . 3
 | 
| 5 | anass 401 | 
. . . 4
 | |
| 6 | 3anan12 992 | 
. . . . . 6
 | |
| 7 | 6 | anbi1i 458 | 
. . . . 5
 | 
| 8 | eqimss 3237 | 
. . . . . . . 8
 | |
| 9 | df-f 5262 | 
. . . . . . . . 9
 | |
| 10 | 9 | biimpri 133 | 
. . . . . . . 8
 | 
| 11 | 8, 10 | sylan2 286 | 
. . . . . . 7
 | 
| 12 | 11 | 3adant2 1018 | 
. . . . . 6
 | 
| 13 | 12 | pm4.71i 391 | 
. . . . 5
 | 
| 14 | ancom 266 | 
. . . . 5
 | |
| 15 | 7, 13, 14 | 3bitr4ri 213 | 
. . . 4
 | 
| 16 | 5, 15 | bitri 184 | 
. . 3
 | 
| 17 | 4, 16 | bitri 184 | 
. 2
 | 
| 18 | 1, 17 | bitri 184 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 | 
| This theorem is referenced by: dff1o3 5510 dff1o4 5512 f1orn 5514 dif1en 6940 fiintim 6992 | 
| Copyright terms: Public domain | W3C validator |