| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dff1o2 | Unicode version | ||
| Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) |
| Ref | Expression |
|---|---|
| dff1o2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-f1o 5324 |
. 2
| |
| 2 | df-f1 5322 |
. . . 4
| |
| 3 | df-fo 5323 |
. . . 4
| |
| 4 | 2, 3 | anbi12i 460 |
. . 3
|
| 5 | anass 401 |
. . . 4
| |
| 6 | 3anan12 1014 |
. . . . . 6
| |
| 7 | 6 | anbi1i 458 |
. . . . 5
|
| 8 | eqimss 3278 |
. . . . . . . 8
| |
| 9 | df-f 5321 |
. . . . . . . . 9
| |
| 10 | 9 | biimpri 133 |
. . . . . . . 8
|
| 11 | 8, 10 | sylan2 286 |
. . . . . . 7
|
| 12 | 11 | 3adant2 1040 |
. . . . . 6
|
| 13 | 12 | pm4.71i 391 |
. . . . 5
|
| 14 | ancom 266 |
. . . . 5
| |
| 15 | 7, 13, 14 | 3bitr4ri 213 |
. . . 4
|
| 16 | 5, 15 | bitri 184 |
. . 3
|
| 17 | 4, 16 | bitri 184 |
. 2
|
| 18 | 1, 17 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 |
| This theorem is referenced by: dff1o3 5577 dff1o4 5579 f1orn 5581 en2 6971 dif1en 7037 fiintim 7089 |
| Copyright terms: Public domain | W3C validator |