ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dff1o2 Unicode version

Theorem dff1o2 5437
Description: Alternate definition of one-to-one onto function. (Contributed by NM, 10-Feb-1997.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Assertion
Ref Expression
dff1o2  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )

Proof of Theorem dff1o2
StepHypRef Expression
1 df-f1o 5195 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 df-f1 5193 . . . 4  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
3 df-fo 5194 . . . 4  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
42, 3anbi12i 456 . . 3  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( ( F : A --> B  /\  Fun  `' F )  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
5 anass 399 . . . 4  |-  ( ( ( F : A --> B  /\  Fun  `' F
)  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) ) )
6 3anan12 980 . . . . . 6  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )
76anbi1i 454 . . . . 5  |-  ( ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  /\  F : A --> B )  <->  ( ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  F : A
--> B ) )
8 eqimss 3196 . . . . . . . 8  |-  ( ran 
F  =  B  ->  ran  F  C_  B )
9 df-f 5192 . . . . . . . . 9  |-  ( F : A --> B  <->  ( F  Fn  A  /\  ran  F  C_  B ) )
109biimpri 132 . . . . . . . 8  |-  ( ( F  Fn  A  /\  ran  F  C_  B )  ->  F : A --> B )
118, 10sylan2 284 . . . . . . 7  |-  ( ( F  Fn  A  /\  ran  F  =  B )  ->  F : A --> B )
12113adant2 1006 . . . . . 6  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  ->  F : A --> B )
1312pm4.71i 389 . . . . 5  |-  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  <->  ( ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B )  /\  F : A --> B ) )
14 ancom 264 . . . . 5  |-  ( ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )  <->  ( ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) )  /\  F : A
--> B ) )
157, 13, 143bitr4ri 212 . . . 4  |-  ( ( F : A --> B  /\  ( Fun  `' F  /\  ( F  Fn  A  /\  ran  F  =  B ) ) )  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
165, 15bitri 183 . . 3  |-  ( ( ( F : A --> B  /\  Fun  `' F
)  /\  ( F  Fn  A  /\  ran  F  =  B ) )  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
174, 16bitri 183 . 2  |-  ( ( F : A -1-1-> B  /\  F : A -onto-> B
)  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
181, 17bitri 183 1  |-  ( F : A -1-1-onto-> B  <->  ( F  Fn  A  /\  Fun  `' F  /\  ran  F  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    C_ wss 3116   `'ccnv 4603   ran crn 4605   Fun wfun 5182    Fn wfn 5183   -->wf 5184   -1-1->wf1 5185   -onto->wfo 5186   -1-1-onto->wf1o 5187
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-3an 970  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195
This theorem is referenced by:  dff1o3  5438  dff1o4  5440  f1orn  5442  dif1en  6845  fiintim  6894
  Copyright terms: Public domain W3C validator