| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | Unicode version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 982 |
. 2
| |
| 2 | anass 401 |
. 2
| |
| 3 | 1, 2 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: 3anrot 985 3anan12 992 anandi3 993 3exdistr 1930 r3al 2541 ceqsex2 2804 ceqsex3v 2806 ceqsex4v 2807 ceqsex6v 2808 ceqsex8v 2809 eldifpr 3650 rexdifpr 3651 trel3 4140 sowlin 4356 dff1o4 5515 mpoxopovel 6308 dfsmo2 6354 ecopovtrn 6700 ecopovtrng 6703 elixp2 6770 elixp 6773 mptelixpg 6802 eqinfti 7095 distrnqg 7473 recmulnqg 7477 ltexnqq 7494 enq0tr 7520 distrnq0 7545 genpdflem 7593 distrlem1prl 7668 distrlem1pru 7669 divmulasscomap 8742 muldivdirap 8753 divmuldivap 8758 prime 9444 eluz2 9626 raluz2 9672 elixx1 9991 elixx3g 9995 elioo2 10015 elioo5 10027 elicc4 10034 iccneg 10083 icoshft 10084 elfz1 10107 elfz 10108 elfz2 10109 elfzm11 10185 elfz2nn0 10206 elfzo2 10244 elfzo3 10258 lbfzo0 10276 fzind2 10334 zmodid2 10463 redivap 11058 imdivap 11065 maxleast 11397 cosmul 11929 bitsval 12127 bitsmod 12140 bitscmp 12142 dfgcd2 12208 lcmneg 12269 coprmgcdb 12283 divgcdcoprmex 12297 cncongr1 12298 cncongr2 12299 difsqpwdvds 12534 elgz 12567 xpsfrnel 13048 xpsfrnel2 13050 mgmsscl 13065 ismhm 13165 mhmpropd 13170 issubm 13176 issubg 13381 eqglact 13433 eqgid 13434 ecqusaddd 13446 ecqusaddcl 13447 isrng 13568 issrg 13599 srglmhm 13627 srgrmhm 13628 isring 13634 ringlghm 13695 dfrhm2 13788 issubrng 13833 issubrg3 13881 islmod 13925 islssm 13991 islssmg 13992 lsspropdg 14065 qusmulrng 14166 lmbrf 14559 uptx 14618 txcn 14619 xmetec 14781 bl2ioo 14894 lgsmodeq 15394 lgsmulsqcoprm 15395 findset 15699 |
| Copyright terms: Public domain | W3C validator |