Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anass | Unicode version |
Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
Ref | Expression |
---|---|
3anass |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3an 980 | . 2 | |
2 | anass 401 | . 2 | |
3 | 1, 2 | bitri 184 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 104 wb 105 w3a 978 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: 3anrot 983 3anan12 990 anandi3 991 3exdistr 1913 r3al 2519 ceqsex2 2775 ceqsex3v 2777 ceqsex4v 2778 ceqsex6v 2779 ceqsex8v 2780 eldifpr 3616 rexdifpr 3617 trel3 4104 sowlin 4314 dff1o4 5461 mpoxopovel 6232 dfsmo2 6278 ecopovtrn 6622 ecopovtrng 6625 elixp2 6692 elixp 6695 mptelixpg 6724 eqinfti 7009 distrnqg 7361 recmulnqg 7365 ltexnqq 7382 enq0tr 7408 distrnq0 7433 genpdflem 7481 distrlem1prl 7556 distrlem1pru 7557 divmulasscomap 8625 muldivdirap 8636 divmuldivap 8641 prime 9323 eluz2 9505 raluz2 9550 elixx1 9866 elixx3g 9870 elioo2 9890 elioo5 9902 elicc4 9909 iccneg 9958 icoshft 9959 elfz1 9982 elfz 9983 elfz2 9984 elfzm11 10059 elfz2nn0 10080 elfzo2 10118 elfzo3 10131 lbfzo0 10149 fzind2 10207 zmodid2 10320 redivap 10849 imdivap 10856 maxleast 11188 cosmul 11719 dfgcd2 11980 lcmneg 12039 coprmgcdb 12053 divgcdcoprmex 12067 cncongr1 12068 cncongr2 12069 difsqpwdvds 12302 elgz 12334 mgmsscl 12644 ismhm 12714 mhmpropd 12718 issubm 12724 issrg 12941 srglmhm 12969 srgrmhm 12970 isring 12976 lmbrf 13266 uptx 13325 txcn 13326 xmetec 13488 bl2ioo 13593 lgsmodeq 13997 lgsmulsqcoprm 13998 findset 14237 |
Copyright terms: Public domain | W3C validator |