| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anass | Unicode version | ||
| Description: Associative law for triple conjunction. (Contributed by NM, 8-Apr-1994.) |
| Ref | Expression |
|---|---|
| 3anass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3an 1004 |
. 2
| |
| 2 | anass 401 |
. 2
| |
| 3 | 1, 2 | bitri 184 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: 3anrot 1007 3anan12 1014 anandi3 1015 3biant1d 1389 3exdistr 1962 r3al 2574 ceqsex2 2841 ceqsex3v 2843 ceqsex4v 2844 ceqsex6v 2845 ceqsex8v 2846 eldifpr 3693 rexdifpr 3694 trel3 4190 sowlin 4411 dff1o4 5582 mpoxopovel 6393 dfsmo2 6439 ecopovtrn 6787 ecopovtrng 6790 elixp2 6857 elixp 6860 mptelixpg 6889 eqinfti 7195 distrnqg 7582 recmulnqg 7586 ltexnqq 7603 enq0tr 7629 distrnq0 7654 genpdflem 7702 distrlem1prl 7777 distrlem1pru 7778 divmulasscomap 8851 muldivdirap 8862 divmuldivap 8867 prime 9554 eluz2 9736 raluz2 9782 elixx1 10101 elixx3g 10105 elioo2 10125 elioo5 10137 elicc4 10144 iccneg 10193 icoshft 10194 elfz1 10217 elfz 10218 elfz2 10219 elfzm11 10295 elfz2nn0 10316 elfzo2 10354 elfzo3 10368 lbfzo0 10389 fzind2 10453 zmodid2 10582 swrdccatin1 11265 swrdccat 11275 redivap 11393 imdivap 11400 maxleast 11732 cosmul 12264 bitsval 12462 bitsmod 12475 bitscmp 12477 dfgcd2 12543 lcmneg 12604 coprmgcdb 12618 divgcdcoprmex 12632 cncongr1 12633 cncongr2 12634 difsqpwdvds 12869 elgz 12902 xpsfrnel 13385 xpsfrnel2 13387 mgmsscl 13402 ismhm 13502 mhmpropd 13507 issubm 13513 issubg 13718 eqglact 13770 eqgid 13771 ecqusaddd 13783 ecqusaddcl 13784 isrng 13905 issrg 13936 srglmhm 13964 srgrmhm 13965 isring 13971 ringlghm 14032 dfrhm2 14126 issubrng 14171 issubrg3 14219 islmod 14263 islssm 14329 islssmg 14330 lsspropdg 14403 qusmulrng 14504 lmbrf 14897 uptx 14956 txcn 14957 xmetec 15119 bl2ioo 15232 lgsmodeq 15732 lgsmulsqcoprm 15733 uspgredg2v 16027 wksfval 16043 wlkeq 16075 findset 16332 |
| Copyright terms: Public domain | W3C validator |