ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anandirs Unicode version

Theorem 3anandirs 1343
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 25-Jul-2006.) (Revised by NM, 18-Apr-2007.)
Hypothesis
Ref Expression
3anandirs.1  |-  ( ( ( ph  /\  th )  /\  ( ps  /\  th )  /\  ( ch 
/\  th ) )  ->  ta )
Assertion
Ref Expression
3anandirs  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )

Proof of Theorem 3anandirs
StepHypRef Expression
1 simpl1 995 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
2 simpr 109 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  th )
3 simpl2 996 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
4 simpl3 997 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ch )
5 3anandirs.1 . 2  |-  ( ( ( ph  /\  th )  /\  ( ps  /\  th )  /\  ( ch 
/\  th ) )  ->  ta )
61, 2, 3, 2, 4, 2, 5syl222anc 1249 1  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 973
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 975
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator