Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 3anandis | Unicode version |
Description: Inference that undistributes a triple conjunction in the antecedent. (Contributed by NM, 18-Apr-2007.) |
Ref | Expression |
---|---|
3anandis.1 |
Ref | Expression |
---|---|
3anandis |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 108 | . 2 | |
2 | simpr1 988 | . 2 | |
3 | simpr2 989 | . 2 | |
4 | simpr3 990 | . 2 | |
5 | 3anandis.1 | . 2 | |
6 | 1, 2, 1, 3, 1, 4, 5 | syl222anc 1233 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 965 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |