Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 989 | . 2 | |
2 | 1 | adantr 274 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpll3 1028 simprl3 1034 simp1l3 1082 simp2l3 1088 simp3l3 1094 3anandirs 1338 frirrg 4328 fcofo 5752 acexmid 5841 rdgon 6354 oawordi 6437 nnmord 6485 nnmword 6486 fidifsnen 6836 dif1en 6845 ac6sfi 6864 difinfsn 7065 enq0tr 7375 distrlem4prl 7525 distrlem4pru 7526 ltaprg 7560 lelttr 7987 ltletr 7988 readdcan 8038 addcan 8078 addcan2 8079 ltadd2 8317 divmulassap 8591 xrlelttr 9742 xrltletr 9743 xaddass 9805 xleadd1a 9809 xlesubadd 9819 icoshftf1o 9927 difelfzle 10069 fzo1fzo0n0 10118 modqmuladdim 10302 modqmuladdnn0 10303 modqm1p1mod0 10310 q2submod 10320 modifeq2int 10321 modqaddmulmod 10326 ltexp2a 10507 exple1 10511 expnlbnd2 10580 nn0ltexp2 10623 nn0leexp2 10624 expcan 10629 fiprsshashgt1 10730 maxleastb 11156 maxltsup 11160 xrltmaxsup 11198 xrmaxltsup 11199 xrmaxaddlem 11201 xrmaxadd 11202 addcn2 11251 mulcn2 11253 isumz 11330 dvdsmodexp 11735 modmulconst 11763 dvdsmod 11800 divalglemex 11859 divalg 11861 gcdass 11948 rplpwr 11960 rppwr 11961 nnwodc 11969 uzwodc 11970 rpmulgcd2 12027 rpdvds 12031 rpexp 12085 znege1 12110 prmdiveq 12168 hashgcdlem 12170 coprimeprodsq 12189 coprimeprodsq2 12190 pythagtriplem3 12199 pcdvdsb 12251 pcgcd1 12259 dvdsprmpweq 12266 pcbc 12281 ctinf 12363 nninfdc 12386 neiint 12785 topssnei 12802 cnptopco 12862 cnrest2 12876 cnptoprest 12879 upxp 12912 bldisj 13041 blgt0 13042 bl2in 13043 blss2ps 13046 blss2 13047 xblm 13057 blssps 13067 blss 13068 bdmopn 13144 metcnp2 13153 txmetcnp 13158 cncfmptc 13222 dvcnp2cntop 13303 dvcn 13304 logdivlti 13442 ltexp2 13500 lgsfvalg 13546 lgsneg 13565 lgsmod 13567 lgsdilem 13568 lgsdirprm 13575 lgsdir 13576 lgsdi 13578 lgsne0 13579 |
Copyright terms: Public domain | W3C validator |