| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1360 ifnetruedc 3612 frirrg 4396 fcofo 5852 acexmid 5942 rdgon 6471 oawordi 6554 nnmord 6602 nnmword 6603 fidifsnen 6966 dif1en 6975 ac6sfi 6994 difinfsn 7201 2omotaplemap 7368 enq0tr 7546 distrlem4prl 7696 distrlem4pru 7697 ltaprg 7731 lelttr 8160 ltletr 8161 readdcan 8211 addcan 8251 addcan2 8252 ltadd2 8491 divmulassap 8767 xrlelttr 9927 xrltletr 9928 xaddass 9990 xleadd1a 9994 xlesubadd 10004 icoshftf1o 10112 difelfzle 10255 fzo1fzo0n0 10305 modqmuladdim 10510 modqmuladdnn0 10511 modqm1p1mod0 10518 q2submod 10528 modifeq2int 10529 modqaddmulmod 10534 seq1g 10606 seqp1g 10609 ltexp2a 10734 exple1 10738 expnlbnd2 10808 nn0ltexp2 10852 nn0leexp2 10853 mulsubdivbinom2ap 10854 expcan 10859 fiprsshashgt1 10960 fun2dmnop0 10990 ccatass 11062 maxleastb 11496 maxltsup 11500 xrltmaxsup 11539 xrmaxltsup 11540 xrmaxaddlem 11542 xrmaxadd 11543 addcn2 11592 mulcn2 11594 isumz 11671 dvdsmodexp 12077 modmulconst 12105 dvdsmod 12144 divalglemex 12204 divalg 12206 gcdass 12307 rplpwr 12319 rppwr 12320 nnwodc 12328 uzwodc 12329 rpmulgcd2 12388 rpdvds 12392 rpexp 12446 znege1 12471 prmdiveq 12529 hashgcdlem 12531 coprimeprodsq 12551 coprimeprodsq2 12552 pythagtriplem3 12561 pcdvdsb 12614 pcgcd1 12622 dvdsprmpweq 12629 pcbc 12645 ctinf 12772 nninfdc 12795 isnsgrp 13209 issubmnd 13245 mulgnn0p1 13440 mulgnnsubcl 13441 mulgneg 13447 mulgdirlem 13460 nmzsubg 13517 ghmmulg 13563 ring1eq0 13781 rmodislmod 14084 lspss 14132 2idlcpblrng 14256 neiint 14588 topssnei 14605 cnptopco 14665 cnrest2 14679 cnptoprest 14682 upxp 14715 bldisj 14844 blgt0 14845 bl2in 14846 blss2ps 14849 blss2 14850 xblm 14860 blssps 14870 blss 14871 bdmopn 14947 metcnp2 14956 txmetcnp 14961 cncfmptc 15039 dvcnp2cntop 15142 dvcn 15143 ply1term 15186 dvply1 15208 logdivlti 15324 ltexp2 15384 lgsfvalg 15453 lgsneg 15472 lgsmod 15474 lgsdilem 15475 lgsdirprm 15482 lgsdir 15483 lgsdi 15485 lgsne0 15486 1dom1el 15889 |
| Copyright terms: Public domain | W3C validator |