![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp3 966 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 272 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 947 |
This theorem is referenced by: simpll3 1005 simprl3 1011 simp1l3 1059 simp2l3 1065 simp3l3 1071 3anandirs 1309 frirrg 4232 fcofo 5639 acexmid 5727 rdgon 6237 oawordi 6319 nnmord 6367 nnmword 6368 fidifsnen 6717 dif1en 6726 ac6sfi 6745 difinfsn 6937 enq0tr 7190 distrlem4prl 7340 distrlem4pru 7341 ltaprg 7375 lelttr 7775 ltletr 7776 readdcan 7825 addcan 7865 addcan2 7866 ltadd2 8100 divmulassap 8368 xrlelttr 9482 xrltletr 9483 xaddass 9545 xleadd1a 9549 xlesubadd 9559 icoshftf1o 9667 difelfzle 9804 fzo1fzo0n0 9853 modqmuladdim 10033 modqmuladdnn0 10034 modqm1p1mod0 10041 q2submod 10051 modifeq2int 10052 modqaddmulmod 10057 ltexp2a 10238 exple1 10242 expnlbnd2 10310 expcan 10356 fiprsshashgt1 10456 maxleastb 10878 maxltsup 10882 xrltmaxsup 10918 xrmaxltsup 10919 xrmaxaddlem 10921 xrmaxadd 10922 addcn2 10971 mulcn2 10973 isumz 11050 modmulconst 11373 dvdsmod 11408 divalglemex 11467 divalg 11469 gcdass 11549 rplpwr 11561 rppwr 11562 rpmulgcd2 11622 rpdvds 11626 rpexp 11677 znege1 11701 hashgcdlem 11748 ctinf 11788 neiint 12157 topssnei 12174 cnptopco 12233 cnrest2 12247 cnptoprest 12250 upxp 12283 bldisj 12390 blgt0 12391 bl2in 12392 blss2ps 12395 blss2 12396 xblm 12406 blssps 12416 blss 12417 bdmopn 12493 metcnp2 12502 txmetcnp 12507 cncfmptc 12568 dvcnp2cntop 12618 dvcn 12619 |
Copyright terms: Public domain | W3C validator |