| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll3 1041 simprl3 1047 simp1l3 1095 simp2l3 1101 simp3l3 1107 3anandirs 1361 ifnetruedc 3613 frirrg 4397 fcofo 5853 acexmid 5943 rdgon 6472 oawordi 6555 nnmord 6603 nnmword 6604 fidifsnen 6967 dif1en 6976 ac6sfi 6995 difinfsn 7202 2omotaplemap 7369 enq0tr 7547 distrlem4prl 7697 distrlem4pru 7698 ltaprg 7732 lelttr 8161 ltletr 8162 readdcan 8212 addcan 8252 addcan2 8253 ltadd2 8492 divmulassap 8768 xrlelttr 9928 xrltletr 9929 xaddass 9991 xleadd1a 9995 xlesubadd 10005 icoshftf1o 10113 difelfzle 10256 fzo1fzo0n0 10307 modqmuladdim 10512 modqmuladdnn0 10513 modqm1p1mod0 10520 q2submod 10530 modifeq2int 10531 modqaddmulmod 10536 seq1g 10608 seqp1g 10611 ltexp2a 10736 exple1 10740 expnlbnd2 10810 nn0ltexp2 10854 nn0leexp2 10855 mulsubdivbinom2ap 10856 expcan 10861 fiprsshashgt1 10962 fun2dmnop0 10992 ccatass 11064 fzowrddc 11100 swrdclg 11103 maxleastb 11525 maxltsup 11529 xrltmaxsup 11568 xrmaxltsup 11569 xrmaxaddlem 11571 xrmaxadd 11572 addcn2 11621 mulcn2 11623 isumz 11700 dvdsmodexp 12106 modmulconst 12134 dvdsmod 12173 divalglemex 12233 divalg 12235 gcdass 12336 rplpwr 12348 rppwr 12349 nnwodc 12357 uzwodc 12358 rpmulgcd2 12417 rpdvds 12421 rpexp 12475 znege1 12500 prmdiveq 12558 hashgcdlem 12560 coprimeprodsq 12580 coprimeprodsq2 12581 pythagtriplem3 12590 pcdvdsb 12643 pcgcd1 12651 dvdsprmpweq 12658 pcbc 12674 ctinf 12801 nninfdc 12824 isnsgrp 13238 issubmnd 13274 mulgnn0p1 13469 mulgnnsubcl 13470 mulgneg 13476 mulgdirlem 13489 nmzsubg 13546 ghmmulg 13592 ring1eq0 13810 rmodislmod 14113 lspss 14161 2idlcpblrng 14285 neiint 14617 topssnei 14634 cnptopco 14694 cnrest2 14708 cnptoprest 14711 upxp 14744 bldisj 14873 blgt0 14874 bl2in 14875 blss2ps 14878 blss2 14879 xblm 14889 blssps 14899 blss 14900 bdmopn 14976 metcnp2 14985 txmetcnp 14990 cncfmptc 15068 dvcnp2cntop 15171 dvcn 15172 ply1term 15215 dvply1 15237 logdivlti 15353 ltexp2 15413 lgsfvalg 15482 lgsneg 15501 lgsmod 15503 lgsdilem 15504 lgsdirprm 15511 lgsdir 15512 lgsdi 15514 lgsne0 15515 1dom1el 15927 |
| Copyright terms: Public domain | W3C validator |