| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1002 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll3 1041 simprl3 1047 simp1l3 1095 simp2l3 1101 simp3l3 1107 3anandirs 1361 ifnetruedc 3618 frirrg 4410 fcofo 5871 acexmid 5961 rdgon 6490 oawordi 6573 nnmord 6621 nnmword 6622 fidifsnen 6988 dif1en 6997 ac6sfi 7016 difinfsn 7223 2omotaplemap 7399 enq0tr 7577 distrlem4prl 7727 distrlem4pru 7728 ltaprg 7762 lelttr 8191 ltletr 8192 readdcan 8242 addcan 8282 addcan2 8283 ltadd2 8522 divmulassap 8798 xrlelttr 9958 xrltletr 9959 xaddass 10021 xleadd1a 10025 xlesubadd 10035 icoshftf1o 10143 difelfzle 10286 fzo1fzo0n0 10339 modqmuladdim 10544 modqmuladdnn0 10545 modqm1p1mod0 10552 q2submod 10562 modifeq2int 10563 modqaddmulmod 10568 seq1g 10640 seqp1g 10643 ltexp2a 10768 exple1 10772 expnlbnd2 10842 nn0ltexp2 10886 nn0leexp2 10887 mulsubdivbinom2ap 10888 expcan 10893 fiprsshashgt1 10994 fun2dmnop0 11024 ccatass 11097 fzowrddc 11133 swrdclg 11136 ccatopth 11202 maxleastb 11610 maxltsup 11614 xrltmaxsup 11653 xrmaxltsup 11654 xrmaxaddlem 11656 xrmaxadd 11657 addcn2 11706 mulcn2 11708 isumz 11785 dvdsmodexp 12191 modmulconst 12219 dvdsmod 12258 divalglemex 12318 divalg 12320 gcdass 12421 rplpwr 12433 rppwr 12434 nnwodc 12442 uzwodc 12443 rpmulgcd2 12502 rpdvds 12506 rpexp 12560 znege1 12585 prmdiveq 12643 hashgcdlem 12645 coprimeprodsq 12665 coprimeprodsq2 12666 pythagtriplem3 12675 pcdvdsb 12728 pcgcd1 12736 dvdsprmpweq 12743 pcbc 12759 ctinf 12886 nninfdc 12909 isnsgrp 13323 issubmnd 13359 mulgnn0p1 13554 mulgnnsubcl 13555 mulgneg 13561 mulgdirlem 13574 nmzsubg 13631 ghmmulg 13677 ring1eq0 13895 rmodislmod 14198 lspss 14246 2idlcpblrng 14370 neiint 14702 topssnei 14719 cnptopco 14779 cnrest2 14793 cnptoprest 14796 upxp 14829 bldisj 14958 blgt0 14959 bl2in 14960 blss2ps 14963 blss2 14964 xblm 14974 blssps 14984 blss 14985 bdmopn 15061 metcnp2 15070 txmetcnp 15075 cncfmptc 15153 dvcnp2cntop 15256 dvcn 15257 ply1term 15300 dvply1 15322 logdivlti 15438 ltexp2 15498 lgsfvalg 15567 lgsneg 15586 lgsmod 15588 lgsdilem 15589 lgsdirprm 15596 lgsdir 15597 lgsdi 15599 lgsne0 15600 umgrnloopvv 15795 1dom1el 16096 |
| Copyright terms: Public domain | W3C validator |