| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl3 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl3 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3 1001 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll3 1040 simprl3 1046 simp1l3 1094 simp2l3 1100 simp3l3 1106 3anandirs 1360 ifnetruedc 3612 frirrg 4396 fcofo 5852 acexmid 5942 rdgon 6471 oawordi 6554 nnmord 6602 nnmword 6603 fidifsnen 6966 dif1en 6975 ac6sfi 6994 difinfsn 7201 2omotaplemap 7368 enq0tr 7546 distrlem4prl 7696 distrlem4pru 7697 ltaprg 7731 lelttr 8160 ltletr 8161 readdcan 8211 addcan 8251 addcan2 8252 ltadd2 8491 divmulassap 8767 xrlelttr 9927 xrltletr 9928 xaddass 9990 xleadd1a 9994 xlesubadd 10004 icoshftf1o 10112 difelfzle 10255 fzo1fzo0n0 10305 modqmuladdim 10510 modqmuladdnn0 10511 modqm1p1mod0 10518 q2submod 10528 modifeq2int 10529 modqaddmulmod 10534 seq1g 10606 seqp1g 10609 ltexp2a 10734 exple1 10738 expnlbnd2 10808 nn0ltexp2 10852 nn0leexp2 10853 mulsubdivbinom2ap 10854 expcan 10859 fiprsshashgt1 10960 fun2dmnop0 10990 ccatass 11062 maxleastb 11467 maxltsup 11471 xrltmaxsup 11510 xrmaxltsup 11511 xrmaxaddlem 11513 xrmaxadd 11514 addcn2 11563 mulcn2 11565 isumz 11642 dvdsmodexp 12048 modmulconst 12076 dvdsmod 12115 divalglemex 12175 divalg 12177 gcdass 12278 rplpwr 12290 rppwr 12291 nnwodc 12299 uzwodc 12300 rpmulgcd2 12359 rpdvds 12363 rpexp 12417 znege1 12442 prmdiveq 12500 hashgcdlem 12502 coprimeprodsq 12522 coprimeprodsq2 12523 pythagtriplem3 12532 pcdvdsb 12585 pcgcd1 12593 dvdsprmpweq 12600 pcbc 12616 ctinf 12743 nninfdc 12766 isnsgrp 13180 issubmnd 13216 mulgnn0p1 13411 mulgnnsubcl 13412 mulgneg 13418 mulgdirlem 13431 nmzsubg 13488 ghmmulg 13534 ring1eq0 13752 rmodislmod 14055 lspss 14103 2idlcpblrng 14227 neiint 14559 topssnei 14576 cnptopco 14636 cnrest2 14650 cnptoprest 14653 upxp 14686 bldisj 14815 blgt0 14816 bl2in 14817 blss2ps 14820 blss2 14821 xblm 14831 blssps 14841 blss 14842 bdmopn 14918 metcnp2 14927 txmetcnp 14932 cncfmptc 15010 dvcnp2cntop 15113 dvcn 15114 ply1term 15157 dvply1 15179 logdivlti 15295 ltexp2 15355 lgsfvalg 15424 lgsneg 15443 lgsmod 15445 lgsdilem 15446 lgsdirprm 15453 lgsdir 15454 lgsdi 15456 lgsne0 15457 1dom1el 15860 |
| Copyright terms: Public domain | W3C validator |