![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2881 brcogw 4831 cocan1 5830 oawordi 6522 nnmord 6570 nnmword 6571 dif1en 6935 ac6sfi 6954 ordiso2 7094 difinfsn 7159 ctssdc 7172 2omotaplemap 7317 enq0tr 7494 distrlem4prl 7644 distrlem4pru 7645 ltaprg 7679 aptiprlemu 7700 lelttr 8108 readdcan 8159 addcan 8199 addcan2 8200 ltadd2 8438 ltmul1a 8610 ltmul1 8611 divmulassap 8714 divmulasscomap 8715 lemul1a 8877 xrlelttr 9872 xleadd1a 9939 xlesubadd 9949 icoshftf1o 10057 lincmb01cmp 10069 iccf1o 10070 fztri3or 10105 fzofzim 10255 ioom 10329 modqmuladdim 10438 modqm1p1mod0 10446 q2submod 10456 modqaddmulmod 10462 ltexp2a 10662 exple1 10666 expnlbnd2 10736 nn0ltexp2 10780 nn0leexp2 10781 expcan 10787 fiprsshashgt1 10888 fimaxq 10898 maxleastb 11358 maxltsup 11362 xrltmaxsup 11400 xrmaxltsup 11401 xrmaxaddlem 11403 addcn2 11453 mulcn2 11455 dvdsmodexp 11938 dvdsadd2b 11983 dvdsmod 12004 oexpneg 12018 divalglemex 12063 divalg 12065 gcdass 12152 rplpwr 12164 rppwr 12165 nnwodc 12173 coprmdvds2 12231 rpmulgcd2 12233 qredeq 12234 rpdvds 12237 cncongr2 12242 rpexp 12291 znege1 12316 prmdiveq 12374 hashgcdlem 12376 odzdvds 12383 modprmn0modprm0 12394 coprimeprodsq2 12396 pythagtriplem3 12405 pcdvdsb 12458 pcgcd1 12466 qexpz 12490 pockthg 12495 ctinf 12587 nninfdc 12610 unbendc 12611 isnsgrp 12989 issubmnd 13023 ress0g 13024 mulgneg 13210 mulgdirlem 13223 submmulg 13236 subgmulg 13258 nmzsubg 13280 ghmmulg 13326 srg1zr 13483 ring1eq0 13544 mulgass2 13554 rhmdvdsr 13671 rmodislmodlem 13846 rmodislmod 13847 lssintclm 13880 rnglidlrng 13994 2idlcpblrng 14019 neiint 14313 topssnei 14330 iscnp4 14386 cnptopco 14390 cnconst2 14401 cnrest2 14404 cnptoprest 14407 cnpdis 14410 bldisj 14569 blgt0 14570 bl2in 14571 blss2ps 14574 blss2 14575 xblm 14585 blssps 14595 blss 14596 xmetresbl 14608 bdbl 14671 metcnp3 14679 metcnp2 14681 cncfmptc 14750 dvcnp2cntop 14848 dvcn 14849 logdivlti 15016 ltexp2 15074 lgsfcl2 15122 lgsdilem 15143 lgsdirprm 15150 lgsdir 15151 lgsdi 15153 lgsne0 15154 |
Copyright terms: Public domain | W3C validator |