Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 987 | . 2 | |
2 | 1 | adantr 274 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simpll1 1026 simprl1 1032 simp1l1 1080 simp2l1 1086 simp3l1 1092 3anandirs 1338 rspc3ev 2846 brcogw 4772 cocan1 5754 oawordi 6433 nnmord 6481 nnmword 6482 dif1en 6841 ac6sfi 6860 ordiso2 6996 difinfsn 7061 ctssdc 7074 enq0tr 7371 distrlem4prl 7521 distrlem4pru 7522 ltaprg 7556 aptiprlemu 7577 lelttr 7983 readdcan 8034 addcan 8074 addcan2 8075 ltadd2 8313 ltmul1a 8485 ltmul1 8486 divmulassap 8587 divmulasscomap 8588 lemul1a 8749 xrlelttr 9738 xleadd1a 9805 xlesubadd 9815 icoshftf1o 9923 lincmb01cmp 9935 iccf1o 9936 fztri3or 9970 fzofzim 10119 ioom 10192 modqmuladdim 10298 modqm1p1mod0 10306 q2submod 10316 modqaddmulmod 10322 ltexp2a 10503 exple1 10507 expnlbnd2 10576 nn0ltexp2 10619 nn0leexp2 10620 expcan 10625 fiprsshashgt1 10726 fimaxq 10736 maxleastb 11152 maxltsup 11156 xrltmaxsup 11194 xrmaxltsup 11195 xrmaxaddlem 11197 addcn2 11247 mulcn2 11249 dvdsmodexp 11731 dvdsadd2b 11776 dvdsmod 11796 oexpneg 11810 divalglemex 11855 divalg 11857 gcdass 11944 rplpwr 11956 rppwr 11957 nnwodc 11965 coprmdvds2 12021 rpmulgcd2 12023 qredeq 12024 rpdvds 12027 cncongr2 12032 rpexp 12081 znege1 12106 prmdiveq 12164 hashgcdlem 12166 odzdvds 12173 modprmn0modprm0 12184 coprimeprodsq2 12186 pythagtriplem3 12195 pcdvdsb 12247 pcgcd1 12255 qexpz 12278 pockthg 12283 ctinf 12359 nninfdc 12382 unbendc 12383 neiint 12745 topssnei 12762 iscnp4 12818 cnptopco 12822 cnconst2 12833 cnrest2 12836 cnptoprest 12839 cnpdis 12842 bldisj 13001 blgt0 13002 bl2in 13003 blss2ps 13006 blss2 13007 xblm 13017 blssps 13027 blss 13028 xmetresbl 13040 bdbl 13103 metcnp3 13111 metcnp2 13113 cncfmptc 13182 dvcnp2cntop 13263 dvcn 13264 logdivlti 13402 ltexp2 13460 lgsfcl2 13507 lgsdilem 13528 lgsdirprm 13535 lgsdir 13536 lgsdi 13538 lgsne0 13539 |
Copyright terms: Public domain | W3C validator |