![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 999 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2882 brcogw 4832 cocan1 5831 oawordi 6524 nnmord 6572 nnmword 6573 dif1en 6937 ac6sfi 6956 ordiso2 7096 difinfsn 7161 ctssdc 7174 2omotaplemap 7319 enq0tr 7496 distrlem4prl 7646 distrlem4pru 7647 ltaprg 7681 aptiprlemu 7702 lelttr 8110 readdcan 8161 addcan 8201 addcan2 8202 ltadd2 8440 ltmul1a 8612 ltmul1 8613 divmulassap 8716 divmulasscomap 8717 lemul1a 8879 xrlelttr 9875 xleadd1a 9942 xlesubadd 9952 icoshftf1o 10060 lincmb01cmp 10072 iccf1o 10073 fztri3or 10108 fzofzim 10258 ioom 10332 modqmuladdim 10441 modqm1p1mod0 10449 q2submod 10459 modqaddmulmod 10465 ltexp2a 10665 exple1 10669 expnlbnd2 10739 nn0ltexp2 10783 nn0leexp2 10784 expcan 10790 fiprsshashgt1 10891 fimaxq 10901 maxleastb 11361 maxltsup 11365 xrltmaxsup 11403 xrmaxltsup 11404 xrmaxaddlem 11406 addcn2 11456 mulcn2 11458 dvdsmodexp 11941 dvdsadd2b 11986 dvdsmod 12007 oexpneg 12021 divalglemex 12066 divalg 12068 gcdass 12155 rplpwr 12167 rppwr 12168 nnwodc 12176 coprmdvds2 12234 rpmulgcd2 12236 qredeq 12237 rpdvds 12240 cncongr2 12245 rpexp 12294 znege1 12319 prmdiveq 12377 hashgcdlem 12379 odzdvds 12386 modprmn0modprm0 12397 coprimeprodsq2 12399 pythagtriplem3 12408 pcdvdsb 12461 pcgcd1 12469 qexpz 12493 pockthg 12498 ctinf 12590 nninfdc 12613 unbendc 12614 isnsgrp 12992 issubmnd 13026 ress0g 13027 mulgneg 13213 mulgdirlem 13226 submmulg 13239 subgmulg 13261 nmzsubg 13283 ghmmulg 13329 srg1zr 13486 ring1eq0 13547 mulgass2 13557 rhmdvdsr 13674 rmodislmodlem 13849 rmodislmod 13850 lssintclm 13883 rnglidlrng 13997 2idlcpblrng 14022 neiint 14324 topssnei 14341 iscnp4 14397 cnptopco 14401 cnconst2 14412 cnrest2 14415 cnptoprest 14418 cnpdis 14421 bldisj 14580 blgt0 14581 bl2in 14582 blss2ps 14585 blss2 14586 xblm 14596 blssps 14606 blss 14607 xmetresbl 14619 bdbl 14682 metcnp3 14690 metcnp2 14692 cncfmptc 14775 dvcnp2cntop 14878 dvcn 14879 logdivlti 15057 ltexp2 15115 lgsfcl2 15163 lgsdilem 15184 lgsdirprm 15191 lgsdir 15192 lgsdi 15194 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |