![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 944 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 271 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: simpll1 983 simprl1 989 simp1l1 1037 simp2l1 1043 simp3l1 1049 3anandirs 1285 rspc3ev 2739 brcogw 4618 cocan1 5580 oawordi 6244 nnmord 6290 nnmword 6291 dif1en 6649 ac6sfi 6668 ordiso2 6782 enq0tr 7054 distrlem4prl 7204 distrlem4pru 7205 ltaprg 7239 aptiprlemu 7260 lelttr 7634 readdcan 7683 addcan 7723 addcan2 7724 ltadd2 7958 ltmul1a 8129 ltmul1 8130 divmulassap 8223 divmulasscomap 8224 lemul1a 8380 xrlelttr 9332 icoshftf1o 9469 lincmb01cmp 9481 iccf1o 9482 fztri3or 9514 fzofzim 9660 ioom 9733 modqmuladdim 9835 modqm1p1mod0 9843 q2submod 9853 modqaddmulmod 9859 ltexp2a 10068 exple1 10072 expnlbnd2 10140 expcan 10186 fiprsshashgt1 10286 fimaxq 10296 maxleastb 10708 maxltsup 10712 addcn2 10760 mulcn2 10762 dvdsadd2b 11182 dvdsmod 11202 oexpneg 11216 divalglemex 11261 divalg 11263 gcdass 11343 rplpwr 11355 rppwr 11356 coprmdvds2 11414 rpmulgcd2 11416 qredeq 11417 rpdvds 11420 cncongr2 11425 rpexp 11471 znege1 11495 hashgcdlem 11542 |
Copyright terms: Public domain | W3C validator |