| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1021 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simpll1 1060 simprl1 1066 simp1l1 1114 simp2l1 1120 simp3l1 1126 3anandirs 1382 rspc3ev 2924 brcogw 4890 cocan1 5910 oawordi 6613 nnmord 6661 nnmword 6662 dif1en 7037 ac6sfi 7056 ordiso2 7198 difinfsn 7263 ctssdc 7276 2omotaplemap 7439 enq0tr 7617 distrlem4prl 7767 distrlem4pru 7768 ltaprg 7802 aptiprlemu 7823 lelttr 8231 readdcan 8282 addcan 8322 addcan2 8323 ltadd2 8562 ltmul1a 8734 ltmul1 8735 divmulassap 8838 divmulasscomap 8839 lemul1a 9001 xrlelttr 9998 xleadd1a 10065 xlesubadd 10075 icoshftf1o 10183 lincmb01cmp 10195 iccf1o 10196 fztri3or 10231 fzofzim 10384 ioom 10475 modqmuladdim 10584 modqm1p1mod0 10592 q2submod 10602 modqaddmulmod 10608 ltexp2a 10808 exple1 10812 expnlbnd2 10882 nn0ltexp2 10926 nn0leexp2 10927 expcan 10933 fiprsshashgt1 11034 fimaxq 11044 fun2dmnop0 11064 ccatass 11138 swrdlen 11179 swrdfv 11180 swrdswrdlem 11231 ccatopth 11243 maxleastb 11720 maxltsup 11724 xrltmaxsup 11763 xrmaxltsup 11764 xrmaxaddlem 11766 addcn2 11816 mulcn2 11818 dvdsmodexp 12301 dvdsadd2b 12346 dvdsmod 12368 oexpneg 12383 divalglemex 12428 divalg 12430 gcdass 12531 rplpwr 12543 rppwr 12544 nnwodc 12552 coprmdvds2 12610 rpmulgcd2 12612 qredeq 12613 rpdvds 12616 cncongr2 12621 rpexp 12670 znege1 12695 prmdiveq 12753 hashgcdlem 12755 odzdvds 12763 modprmn0modprm0 12774 coprimeprodsq2 12776 pythagtriplem3 12785 pcdvdsb 12838 pcgcd1 12846 qexpz 12870 pockthg 12875 ctinf 12996 nninfdc 13019 unbendc 13020 isnsgrp 13434 issubmnd 13470 ress0g 13471 mulgneg 13672 mulgdirlem 13685 submmulg 13698 subgmulg 13720 nmzsubg 13742 ghmmulg 13788 srg1zr 13945 ring1eq0 14006 mulgass2 14016 rhmdvdsr 14133 rmodislmodlem 14308 rmodislmod 14309 lssintclm 14342 rnglidlrng 14456 2idlcpblrng 14481 neiint 14813 topssnei 14830 iscnp4 14886 cnptopco 14890 cnconst2 14901 cnrest2 14904 cnptoprest 14907 cnpdis 14910 bldisj 15069 blgt0 15070 bl2in 15071 blss2ps 15074 blss2 15075 xblm 15085 blssps 15095 blss 15096 xmetresbl 15108 bdbl 15171 metcnp3 15179 metcnp2 15181 cncfmptc 15264 dvcnp2cntop 15367 dvcn 15368 logdivlti 15549 ltexp2 15609 lgsfcl2 15679 lgsdilem 15700 lgsdirprm 15707 lgsdir 15708 lgsdi 15710 lgsne0 15711 incistruhgr 15884 |
| Copyright terms: Public domain | W3C validator |