| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) | 
| Ref | Expression | 
|---|---|
| simpl1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | simp1 999 | 
. 2
 | |
| 2 | 1 | adantr 276 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1359 rspc3ev 2885 brcogw 4835 cocan1 5834 oawordi 6527 nnmord 6575 nnmword 6576 dif1en 6940 ac6sfi 6959 ordiso2 7101 difinfsn 7166 ctssdc 7179 2omotaplemap 7324 enq0tr 7501 distrlem4prl 7651 distrlem4pru 7652 ltaprg 7686 aptiprlemu 7707 lelttr 8115 readdcan 8166 addcan 8206 addcan2 8207 ltadd2 8446 ltmul1a 8618 ltmul1 8619 divmulassap 8722 divmulasscomap 8723 lemul1a 8885 xrlelttr 9881 xleadd1a 9948 xlesubadd 9958 icoshftf1o 10066 lincmb01cmp 10078 iccf1o 10079 fztri3or 10114 fzofzim 10264 ioom 10350 modqmuladdim 10459 modqm1p1mod0 10467 q2submod 10477 modqaddmulmod 10483 ltexp2a 10683 exple1 10687 expnlbnd2 10757 nn0ltexp2 10801 nn0leexp2 10802 expcan 10808 fiprsshashgt1 10909 fimaxq 10919 maxleastb 11379 maxltsup 11383 xrltmaxsup 11422 xrmaxltsup 11423 xrmaxaddlem 11425 addcn2 11475 mulcn2 11477 dvdsmodexp 11960 dvdsadd2b 12005 dvdsmod 12027 oexpneg 12042 divalglemex 12087 divalg 12089 gcdass 12182 rplpwr 12194 rppwr 12195 nnwodc 12203 coprmdvds2 12261 rpmulgcd2 12263 qredeq 12264 rpdvds 12267 cncongr2 12272 rpexp 12321 znege1 12346 prmdiveq 12404 hashgcdlem 12406 odzdvds 12414 modprmn0modprm0 12425 coprimeprodsq2 12427 pythagtriplem3 12436 pcdvdsb 12489 pcgcd1 12497 qexpz 12521 pockthg 12526 ctinf 12647 nninfdc 12670 unbendc 12671 isnsgrp 13049 issubmnd 13083 ress0g 13084 mulgneg 13270 mulgdirlem 13283 submmulg 13296 subgmulg 13318 nmzsubg 13340 ghmmulg 13386 srg1zr 13543 ring1eq0 13604 mulgass2 13614 rhmdvdsr 13731 rmodislmodlem 13906 rmodislmod 13907 lssintclm 13940 rnglidlrng 14054 2idlcpblrng 14079 neiint 14381 topssnei 14398 iscnp4 14454 cnptopco 14458 cnconst2 14469 cnrest2 14472 cnptoprest 14475 cnpdis 14478 bldisj 14637 blgt0 14638 bl2in 14639 blss2ps 14642 blss2 14643 xblm 14653 blssps 14663 blss 14664 xmetresbl 14676 bdbl 14739 metcnp3 14747 metcnp2 14749 cncfmptc 14832 dvcnp2cntop 14935 dvcn 14936 logdivlti 15117 ltexp2 15177 lgsfcl2 15247 lgsdilem 15268 lgsdirprm 15275 lgsdir 15276 lgsdi 15278 lgsne0 15279 | 
| Copyright terms: Public domain | W3C validator |