| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 999 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simpll1 1038 simprl1 1044 simp1l1 1092 simp2l1 1098 simp3l1 1104 3anandirs 1360 rspc3ev 2893 brcogw 4846 cocan1 5855 oawordi 6554 nnmord 6602 nnmword 6603 dif1en 6975 ac6sfi 6994 ordiso2 7136 difinfsn 7201 ctssdc 7214 2omotaplemap 7368 enq0tr 7546 distrlem4prl 7696 distrlem4pru 7697 ltaprg 7731 aptiprlemu 7752 lelttr 8160 readdcan 8211 addcan 8251 addcan2 8252 ltadd2 8491 ltmul1a 8663 ltmul1 8664 divmulassap 8767 divmulasscomap 8768 lemul1a 8930 xrlelttr 9927 xleadd1a 9994 xlesubadd 10004 icoshftf1o 10112 lincmb01cmp 10124 iccf1o 10125 fztri3or 10160 fzofzim 10310 ioom 10401 modqmuladdim 10510 modqm1p1mod0 10518 q2submod 10528 modqaddmulmod 10534 ltexp2a 10734 exple1 10738 expnlbnd2 10808 nn0ltexp2 10852 nn0leexp2 10853 expcan 10859 fiprsshashgt1 10960 fimaxq 10970 fun2dmnop0 10990 ccatass 11062 maxleastb 11496 maxltsup 11500 xrltmaxsup 11539 xrmaxltsup 11540 xrmaxaddlem 11542 addcn2 11592 mulcn2 11594 dvdsmodexp 12077 dvdsadd2b 12122 dvdsmod 12144 oexpneg 12159 divalglemex 12204 divalg 12206 gcdass 12307 rplpwr 12319 rppwr 12320 nnwodc 12328 coprmdvds2 12386 rpmulgcd2 12388 qredeq 12389 rpdvds 12392 cncongr2 12397 rpexp 12446 znege1 12471 prmdiveq 12529 hashgcdlem 12531 odzdvds 12539 modprmn0modprm0 12550 coprimeprodsq2 12552 pythagtriplem3 12561 pcdvdsb 12614 pcgcd1 12622 qexpz 12646 pockthg 12651 ctinf 12772 nninfdc 12795 unbendc 12796 isnsgrp 13209 issubmnd 13245 ress0g 13246 mulgneg 13447 mulgdirlem 13460 submmulg 13473 subgmulg 13495 nmzsubg 13517 ghmmulg 13563 srg1zr 13720 ring1eq0 13781 mulgass2 13791 rhmdvdsr 13908 rmodislmodlem 14083 rmodislmod 14084 lssintclm 14117 rnglidlrng 14231 2idlcpblrng 14256 neiint 14588 topssnei 14605 iscnp4 14661 cnptopco 14665 cnconst2 14676 cnrest2 14679 cnptoprest 14682 cnpdis 14685 bldisj 14844 blgt0 14845 bl2in 14846 blss2ps 14849 blss2 14850 xblm 14860 blssps 14870 blss 14871 xmetresbl 14883 bdbl 14946 metcnp3 14954 metcnp2 14956 cncfmptc 15039 dvcnp2cntop 15142 dvcn 15143 logdivlti 15324 ltexp2 15384 lgsfcl2 15454 lgsdilem 15475 lgsdirprm 15482 lgsdir 15483 lgsdi 15485 lgsne0 15486 |
| Copyright terms: Public domain | W3C validator |