| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll1 1039 simprl1 1045 simp1l1 1093 simp2l1 1099 simp3l1 1105 3anandirs 1361 rspc3ev 2894 brcogw 4847 cocan1 5856 oawordi 6555 nnmord 6603 nnmword 6604 dif1en 6976 ac6sfi 6995 ordiso2 7137 difinfsn 7202 ctssdc 7215 2omotaplemap 7369 enq0tr 7547 distrlem4prl 7697 distrlem4pru 7698 ltaprg 7732 aptiprlemu 7753 lelttr 8161 readdcan 8212 addcan 8252 addcan2 8253 ltadd2 8492 ltmul1a 8664 ltmul1 8665 divmulassap 8768 divmulasscomap 8769 lemul1a 8931 xrlelttr 9928 xleadd1a 9995 xlesubadd 10005 icoshftf1o 10113 lincmb01cmp 10125 iccf1o 10126 fztri3or 10161 fzofzim 10312 ioom 10403 modqmuladdim 10512 modqm1p1mod0 10520 q2submod 10530 modqaddmulmod 10536 ltexp2a 10736 exple1 10740 expnlbnd2 10810 nn0ltexp2 10854 nn0leexp2 10855 expcan 10861 fiprsshashgt1 10962 fimaxq 10972 fun2dmnop0 10992 ccatass 11064 swrdlen 11105 swrdfv 11106 maxleastb 11525 maxltsup 11529 xrltmaxsup 11568 xrmaxltsup 11569 xrmaxaddlem 11571 addcn2 11621 mulcn2 11623 dvdsmodexp 12106 dvdsadd2b 12151 dvdsmod 12173 oexpneg 12188 divalglemex 12233 divalg 12235 gcdass 12336 rplpwr 12348 rppwr 12349 nnwodc 12357 coprmdvds2 12415 rpmulgcd2 12417 qredeq 12418 rpdvds 12421 cncongr2 12426 rpexp 12475 znege1 12500 prmdiveq 12558 hashgcdlem 12560 odzdvds 12568 modprmn0modprm0 12579 coprimeprodsq2 12581 pythagtriplem3 12590 pcdvdsb 12643 pcgcd1 12651 qexpz 12675 pockthg 12680 ctinf 12801 nninfdc 12824 unbendc 12825 isnsgrp 13238 issubmnd 13274 ress0g 13275 mulgneg 13476 mulgdirlem 13489 submmulg 13502 subgmulg 13524 nmzsubg 13546 ghmmulg 13592 srg1zr 13749 ring1eq0 13810 mulgass2 13820 rhmdvdsr 13937 rmodislmodlem 14112 rmodislmod 14113 lssintclm 14146 rnglidlrng 14260 2idlcpblrng 14285 neiint 14617 topssnei 14634 iscnp4 14690 cnptopco 14694 cnconst2 14705 cnrest2 14708 cnptoprest 14711 cnpdis 14714 bldisj 14873 blgt0 14874 bl2in 14875 blss2ps 14878 blss2 14879 xblm 14889 blssps 14899 blss 14900 xmetresbl 14912 bdbl 14975 metcnp3 14983 metcnp2 14985 cncfmptc 15068 dvcnp2cntop 15171 dvcn 15172 logdivlti 15353 ltexp2 15413 lgsfcl2 15483 lgsdilem 15504 lgsdirprm 15511 lgsdir 15512 lgsdi 15514 lgsne0 15515 |
| Copyright terms: Public domain | W3C validator |