| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simpl1 | Unicode version | ||
| Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
| Ref | Expression |
|---|---|
| simpl1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp1 1000 |
. 2
| |
| 2 | 1 | adantr 276 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simpll1 1039 simprl1 1045 simp1l1 1093 simp2l1 1099 simp3l1 1105 3anandirs 1361 rspc3ev 2901 brcogw 4865 cocan1 5879 oawordi 6578 nnmord 6626 nnmword 6627 dif1en 7002 ac6sfi 7021 ordiso2 7163 difinfsn 7228 ctssdc 7241 2omotaplemap 7404 enq0tr 7582 distrlem4prl 7732 distrlem4pru 7733 ltaprg 7767 aptiprlemu 7788 lelttr 8196 readdcan 8247 addcan 8287 addcan2 8288 ltadd2 8527 ltmul1a 8699 ltmul1 8700 divmulassap 8803 divmulasscomap 8804 lemul1a 8966 xrlelttr 9963 xleadd1a 10030 xlesubadd 10040 icoshftf1o 10148 lincmb01cmp 10160 iccf1o 10161 fztri3or 10196 fzofzim 10349 ioom 10440 modqmuladdim 10549 modqm1p1mod0 10557 q2submod 10567 modqaddmulmod 10573 ltexp2a 10773 exple1 10777 expnlbnd2 10847 nn0ltexp2 10891 nn0leexp2 10892 expcan 10898 fiprsshashgt1 10999 fimaxq 11009 fun2dmnop0 11029 ccatass 11102 swrdlen 11143 swrdfv 11144 swrdswrdlem 11195 ccatopth 11207 maxleastb 11640 maxltsup 11644 xrltmaxsup 11683 xrmaxltsup 11684 xrmaxaddlem 11686 addcn2 11736 mulcn2 11738 dvdsmodexp 12221 dvdsadd2b 12266 dvdsmod 12288 oexpneg 12303 divalglemex 12348 divalg 12350 gcdass 12451 rplpwr 12463 rppwr 12464 nnwodc 12472 coprmdvds2 12530 rpmulgcd2 12532 qredeq 12533 rpdvds 12536 cncongr2 12541 rpexp 12590 znege1 12615 prmdiveq 12673 hashgcdlem 12675 odzdvds 12683 modprmn0modprm0 12694 coprimeprodsq2 12696 pythagtriplem3 12705 pcdvdsb 12758 pcgcd1 12766 qexpz 12790 pockthg 12795 ctinf 12916 nninfdc 12939 unbendc 12940 isnsgrp 13353 issubmnd 13389 ress0g 13390 mulgneg 13591 mulgdirlem 13604 submmulg 13617 subgmulg 13639 nmzsubg 13661 ghmmulg 13707 srg1zr 13864 ring1eq0 13925 mulgass2 13935 rhmdvdsr 14052 rmodislmodlem 14227 rmodislmod 14228 lssintclm 14261 rnglidlrng 14375 2idlcpblrng 14400 neiint 14732 topssnei 14749 iscnp4 14805 cnptopco 14809 cnconst2 14820 cnrest2 14823 cnptoprest 14826 cnpdis 14829 bldisj 14988 blgt0 14989 bl2in 14990 blss2ps 14993 blss2 14994 xblm 15004 blssps 15014 blss 15015 xmetresbl 15027 bdbl 15090 metcnp3 15098 metcnp2 15100 cncfmptc 15183 dvcnp2cntop 15286 dvcn 15287 logdivlti 15468 ltexp2 15528 lgsfcl2 15598 lgsdilem 15619 lgsdirprm 15626 lgsdir 15627 lgsdi 15629 lgsne0 15630 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |