![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 944 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 270 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 |
This theorem depends on definitions: df-bi 115 df-3an 926 |
This theorem is referenced by: simpll2 983 simprl2 989 simp1l2 1037 simp2l2 1043 simp3l2 1049 3anandirs 1284 rspc3ev 2738 tfisi 4402 brcogw 4605 oawordi 6230 nnmord 6276 nnmword 6277 ac6sfi 6614 unsnfi 6629 unsnfidcel 6631 ordiso2 6728 prarloclemarch2 6978 enq0tr 6993 distrlem4prl 7143 distrlem4pru 7144 ltaprg 7178 aptiprlemu 7199 lelttr 7573 ltletr 7574 readdcan 7622 addcan 7662 addcan2 7663 ltadd2 7897 ltmul1a 8068 ltmul1 8069 divmulassap 8162 divmulasscomap 8163 lemul1a 8319 xrlelttr 9271 xrltletr 9272 ixxdisj 9321 icoshftf1o 9408 icodisj 9409 lincmb01cmp 9420 iccf1o 9421 fztri3or 9453 ioom 9672 modqmuladdim 9774 modqmuladdnn0 9775 q2submod 9792 modqaddmulmod 9798 exp3val 9957 ltexp2a 10007 exple1 10011 expnbnd 10077 expnlbnd2 10079 expcan 10125 fiprsshashgt1 10225 maxleastb 10647 maxltsup 10651 addcn2 10699 mulcn2 10701 geoisum1c 10914 dvdsval2 11077 dvdsadd2b 11121 dvdsmod 11141 oexpneg 11155 divalglemex 11200 divalg 11202 gcdass 11282 rplpwr 11294 rppwr 11295 lcmass 11345 coprmdvds2 11353 rpmulgcd2 11355 rpdvds 11359 cncongr2 11364 rpexp 11410 znege1 11434 hashgcdlem 11481 |
Copyright terms: Public domain | W3C validator |