![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 998 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpll2 1037 simprl2 1043 simp1l2 1091 simp2l2 1097 simp3l2 1103 3anandirs 1348 rspc3ev 2860 tfisi 4588 brcogw 4798 oawordi 6473 nnmord 6521 nnmword 6522 ac6sfi 6901 unsnfi 6921 unsnfidcel 6923 ordiso2 7037 prarloclemarch2 7421 enq0tr 7436 distrlem4prl 7586 distrlem4pru 7587 ltaprg 7621 aptiprlemu 7642 lelttr 8049 ltletr 8050 readdcan 8100 addcan 8140 addcan2 8141 ltadd2 8379 ltmul1a 8551 ltmul1 8552 divmulassap 8655 divmulasscomap 8656 lemul1a 8818 xrlelttr 9809 xrltletr 9810 xaddass 9872 xleadd1a 9876 xltadd1 9879 xlesubadd 9886 ixxdisj 9906 icoshftf1o 9994 icodisj 9995 lincmb01cmp 10006 iccf1o 10007 fztri3or 10042 ioom 10264 modqmuladdim 10370 modqmuladdnn0 10371 q2submod 10388 modqaddmulmod 10394 exp3val 10525 ltexp2a 10575 exple1 10579 expnbnd 10647 expnlbnd2 10649 nn0ltexp2 10692 nn0leexp2 10693 mulsubdivbinom2ap 10694 expcan 10699 fiprsshashgt1 10800 maxleastb 11226 maxltsup 11230 xrltmaxsup 11268 xrmaxltsup 11269 xrmaxaddlem 11271 xrmaxadd 11272 addcn2 11321 mulcn2 11323 geoisum1c 11531 dvdsval2 11800 dvdsmodexp 11805 dvdsadd2b 11850 dvdsaddre2b 11851 dvdsmod 11871 oexpneg 11885 divalglemex 11930 divalg 11932 gcdass 12019 rplpwr 12031 rppwr 12032 nnminle 12039 lcmass 12088 coprmdvds2 12096 rpmulgcd2 12098 rpdvds 12102 cncongr2 12107 rpexp 12156 znege1 12181 prmdiveq 12239 hashgcdlem 12241 odzdvds 12248 coprimeprodsq2 12261 pythagtriplem3 12270 pythagtriplem4 12271 pcdvdsb 12322 pcbc 12352 ctinf 12434 nninfdc 12457 isnsgrp 12819 issubmnd 12850 nmzsubg 13080 srg1zr 13181 ring1eq0 13236 mulgass2 13246 rmodislmod 13452 topssnei 13823 cnptopco 13883 cnconst2 13894 cnptoprest 13900 cnpdis 13903 upxp 13933 bldisj 14062 blgt0 14063 bl2in 14064 blss2ps 14067 blss2 14068 xblm 14078 blssps 14088 blss 14089 xmetresbl 14101 bdbl 14164 bdmopn 14165 metcnp3 14172 metcnp 14173 metcnp2 14174 dvfvalap 14311 dvcnp2cntop 14324 dvcn 14325 logdivlti 14463 ltexp2 14521 lgsfvalg 14567 lgsneg 14586 lgsdilem 14589 lgsdirprm 14596 lgsdir 14597 lgsdi 14599 lgsne0 14600 1dom1el 14904 |
Copyright terms: Public domain | W3C validator |