![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpl2 | Unicode version |
Description: Simplification rule. (Contributed by Jeff Hankins, 17-Nov-2009.) |
Ref | Expression |
---|---|
simpl2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp2 998 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 980 |
This theorem is referenced by: simpll2 1037 simprl2 1043 simp1l2 1091 simp2l2 1097 simp3l2 1103 3anandirs 1348 rspc3ev 2859 tfisi 4587 brcogw 4797 oawordi 6470 nnmord 6518 nnmword 6519 ac6sfi 6898 unsnfi 6918 unsnfidcel 6920 ordiso2 7034 prarloclemarch2 7418 enq0tr 7433 distrlem4prl 7583 distrlem4pru 7584 ltaprg 7618 aptiprlemu 7639 lelttr 8046 ltletr 8047 readdcan 8097 addcan 8137 addcan2 8138 ltadd2 8376 ltmul1a 8548 ltmul1 8549 divmulassap 8652 divmulasscomap 8653 lemul1a 8815 xrlelttr 9806 xrltletr 9807 xaddass 9869 xleadd1a 9873 xltadd1 9876 xlesubadd 9883 ixxdisj 9903 icoshftf1o 9991 icodisj 9992 lincmb01cmp 10003 iccf1o 10004 fztri3or 10039 ioom 10261 modqmuladdim 10367 modqmuladdnn0 10368 q2submod 10385 modqaddmulmod 10391 exp3val 10522 ltexp2a 10572 exple1 10576 expnbnd 10644 expnlbnd2 10646 nn0ltexp2 10689 nn0leexp2 10690 mulsubdivbinom2ap 10691 expcan 10696 fiprsshashgt1 10797 maxleastb 11223 maxltsup 11227 xrltmaxsup 11265 xrmaxltsup 11266 xrmaxaddlem 11268 xrmaxadd 11269 addcn2 11318 mulcn2 11320 geoisum1c 11528 dvdsval2 11797 dvdsmodexp 11802 dvdsadd2b 11847 dvdsaddre2b 11848 dvdsmod 11868 oexpneg 11882 divalglemex 11927 divalg 11929 gcdass 12016 rplpwr 12028 rppwr 12029 nnminle 12036 lcmass 12085 coprmdvds2 12093 rpmulgcd2 12095 rpdvds 12099 cncongr2 12104 rpexp 12153 znege1 12178 prmdiveq 12236 hashgcdlem 12238 odzdvds 12245 coprimeprodsq2 12258 pythagtriplem3 12267 pythagtriplem4 12268 pcdvdsb 12319 pcbc 12349 ctinf 12431 nninfdc 12454 isnsgrp 12812 issubmnd 12843 nmzsubg 13070 srg1zr 13170 ring1eq0 13225 mulgass2 13235 rmodislmod 13441 topssnei 13665 cnptopco 13725 cnconst2 13736 cnptoprest 13742 cnpdis 13745 upxp 13775 bldisj 13904 blgt0 13905 bl2in 13906 blss2ps 13909 blss2 13910 xblm 13920 blssps 13930 blss 13931 xmetresbl 13943 bdbl 14006 bdmopn 14007 metcnp3 14014 metcnp 14015 metcnp2 14016 dvfvalap 14153 dvcnp2cntop 14166 dvcn 14167 logdivlti 14305 ltexp2 14363 lgsfvalg 14409 lgsneg 14428 lgsdilem 14431 lgsdirprm 14438 lgsdir 14439 lgsdi 14441 lgsne0 14442 |
Copyright terms: Public domain | W3C validator |