| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 3anbi1i | GIF version | ||
| Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.) |
| Ref | Expression |
|---|---|
| 3anbi1i.1 | ⊢ (𝜑 ↔ 𝜓) |
| Ref | Expression |
|---|---|
| 3anbi1i | ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3anbi1i.1 | . 2 ⊢ (𝜑 ↔ 𝜓) | |
| 2 | biid 171 | . 2 ⊢ (𝜒 ↔ 𝜒) | |
| 3 | biid 171 | . 2 ⊢ (𝜃 ↔ 𝜃) | |
| 4 | 1, 2, 3 | 3anbi123i 1190 | 1 ⊢ ((𝜑 ∧ 𝜒 ∧ 𝜃) ↔ (𝜓 ∧ 𝜒 ∧ 𝜃)) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∧ w3a 980 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: fzolb 10229 txcn 14511 |
| Copyright terms: Public domain | W3C validator |