ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  3anbi2i Unicode version

Theorem 3anbi2i 1181
Description: Inference adding two conjuncts to each side of a biconditional. (Contributed by NM, 8-Sep-2006.)
Hypothesis
Ref Expression
3anbi1i.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
3anbi2i  |-  ( ( ch  /\  ph  /\  th )  <->  ( ch  /\  ps  /\  th ) )

Proof of Theorem 3anbi2i
StepHypRef Expression
1 biid 170 . 2  |-  ( ch  <->  ch )
2 3anbi1i.1 . 2  |-  ( ph  <->  ps )
3 biid 170 . 2  |-  ( th  <->  th )
41, 2, 33anbi123i 1178 1  |-  ( ( ch  /\  ph  /\  th )  <->  ( ch  /\  ps  /\  th ) )
Colors of variables: wff set class
Syntax hints:    <-> wb 104    /\ w3a 968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107
This theorem depends on definitions:  df-bi 116  df-3an 970
This theorem is referenced by:  seq3f1olemp  10437  seq3f1oleml  10438  fsum3  11328
  Copyright terms: Public domain W3C validator